Anti-Jamming Underwater Transmission With Mobility and Learning

In this letter, we present an anti-jamming underwater transmission framework that applies reinforcement learning to control the transmit power and uses the transducer mobility to address jamming in underwater acoustic networks. The deep Q-networks-based transmission scheme can achieve the optimal po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2018-03, Vol.22 (3), p.542-545
Hauptverfasser: Xiao, Liang, Donghua, Jiang, Wan, Xiaoyue, Su, Wei, Tang, Yuliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this letter, we present an anti-jamming underwater transmission framework that applies reinforcement learning to control the transmit power and uses the transducer mobility to address jamming in underwater acoustic networks. The deep Q-networks-based transmission scheme can achieve the optimal power and node mobility control without knowing the jamming model and the underwater channel model in the dynamic game. Experiments performed with transducers in a non-anechoic pool show that our proposed scheme can reduce the bit error rate of the underwater transmission against reactive jamming compared with the Q-learning based scheme.
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2018.2792015