Cache-oblivious algorithms

This paper presents asymptotically optimal algorithms for rectangular matrix transpose, FFT, and sorting on computers with multiple levels of caching. Unlike previous optimal algorithms, these algorithms are cache oblivious: no variables dependent on hardware parameters, such as cache size and cache...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents asymptotically optimal algorithms for rectangular matrix transpose, FFT, and sorting on computers with multiple levels of caching. Unlike previous optimal algorithms, these algorithms are cache oblivious: no variables dependent on hardware parameters, such as cache size and cache-line length, need to be tuned to achieve optimality. Nevertheless, these algorithms use an optimal amount of work and move data optimally among multiple levels of cache. For a cache with size Z and cache-line length L where Z=/spl Omega/(L/sup 2/) the number of cache misses for an m/spl times/n matrix transpose is /spl Theta/(1+mn/L). The number of cache misses for either an n-point FFT or the sorting of n numbers is /spl Theta/(1+(n/L)(1+log/sub Z/n)). We also give an /spl Theta/(mnp)-work algorithm to multiply an m/spl times/n matrix by an n/spl times/p matrix that incurs /spl Theta/(1+(mn+np+mp)/L+mnp/L/spl radic/Z) cache faults. We introduce an "ideal-cache" model to analyze our algorithms. We prove that an optimal cache-oblivious algorithm designed for two levels of memory is also optimal for multiple levels and that the assumption of optimal replacement in the ideal-cache model. Can be simulated efficiently by LRU replacement. We also provide preliminary empirical results on the effectiveness of cache-oblivious algorithms in practice.
ISSN:0272-5428
DOI:10.1109/SFFCS.1999.814600