Proposal-Free Network for Instance-Level Object Segmentation
Instance-level object segmentation is an important yet under-explored task. Most of state-of-the-art methods rely on region proposal methods to extract candidate segments and then utilize object classification to produce final results. Nonetheless, generating reliable region proposals itself is a qu...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2018-12, Vol.40 (12), p.2978-2991 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Instance-level object segmentation is an important yet under-explored task. Most of state-of-the-art methods rely on region proposal methods to extract candidate segments and then utilize object classification to produce final results. Nonetheless, generating reliable region proposals itself is a quite challenging and unsolved task. In this work, we propose a Proposal-Free Network (PFN) to address the instance-level object segmentation problem, which outputs the numbers of instances of different categories and the pixel-level information on i) the coordinates of the instance bounding box each pixel belongs to, and ii) the confidences of different categories for each pixel, based on pixel-to-pixel deep convolutional neural network. All the outputs together, by using any off-the-shelf clustering method for simple post-processing, can naturally generate the ultimate instance-level object segmentation results. The whole PFN can be easily trained without the requirement of a proposal generation stage. Extensive evaluations on the challenging PASCAL VOC 2012 semantic segmentation benchmark demonstrate the effectiveness of the proposed PFN solution without relying on any proposal generation methods. |
---|---|
ISSN: | 0162-8828 1939-3539 2160-9292 |
DOI: | 10.1109/TPAMI.2017.2775623 |