Buffer block planning for interconnect-driven floorplanning

We study buffer block planning for interconnect-driven floorplanning in deep submicron designs. We first introduce the concept of feasible region (FR) for buffer insertion, and derive closed-form formula for FR. We observe that the FR for a buffer is quite large in general even under fairly tight de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cong, J., Tianming Kong, Pan, D.Z.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study buffer block planning for interconnect-driven floorplanning in deep submicron designs. We first introduce the concept of feasible region (FR) for buffer insertion, and derive closed-form formula for FR. We observe that the FR for a buffer is quite large in general even under fairly tight delay constraints. Therefore, FR gives us a lot of flexibility to plan for buffer locations. We then develop an effective buffer block planning (BBP) algorithm to perform buffer clustering such that the overall chip area and the buffer block number can be minimized. To the best of our knowledge, this is the first in-depth study on buffer planning for interconnect-driven floorplanning with both area and delay consideration.
ISSN:1092-3152
1558-2434
DOI:10.1109/ICCAD.1999.810675