Probabilistic estimation-based data mining for discovering insurance risks

IBM's underwriting profitability analysis application mines property and casualty insurance policy and claims data to construct predictive models for insurance risks. UPA uses the ProbE data-mining kernel to discover risk-characterization rules by analyzing large, noisy data sets.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE intelligent systems & their applications 1999-11, Vol.14 (6), p.49-58
Hauptverfasser: Apte, C., Grossman, E., Pednault, E.P.D., Rosen, B.K., Tipu, F.A., White, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:IBM's underwriting profitability analysis application mines property and casualty insurance policy and claims data to construct predictive models for insurance risks. UPA uses the ProbE data-mining kernel to discover risk-characterization rules by analyzing large, noisy data sets.
ISSN:1094-7167
DOI:10.1109/5254.809568