A Set Space Model for Feature Calculus

Processing natural language at the sentence level suffers from a sparse-feature problem caused by the limited number of words in a sentence. In this article, a Set Space Model (SSM) is proposed to utilize sentence information, the main idea being that, depending on structural characteristics or func...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE intelligent systems 2017-09, Vol.32 (5), p.36-42
Hauptverfasser: Chen, Yanping, Zheng, Qinghua, Chen, Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Processing natural language at the sentence level suffers from a sparse-feature problem caused by the limited number of words in a sentence. In this article, a Set Space Model (SSM) is proposed to utilize sentence information, the main idea being that, depending on structural characteristics or functional principles of linguistics, features in a sentence can be grouped into different sets. Feature calculus can then operate on the grouped features and capture structural information using external knowledge. The authors implement this method in a traditional information extraction task, with results showing significant and constant improvement in general information extraction.
ISSN:1541-1672
1941-1294
DOI:10.1109/MIS.2017.3711651