Q-Learning-Based Voltage-Swing Tuning and Compensation for 2.5-D Memory-Logic Integration
In this paper, an efficient I/Q management with Q-learning-based transmitter swing adjustment and receiver compensation is developed for energy-efficient 2.5-D memory-logic integration. The proposed approach is able to achieve significant power reduction over other state-of-the-art methods.
Gespeichert in:
Veröffentlicht in: | IEEE design and test 2018-04, Vol.35 (2), p.91-99 |
---|---|
Hauptverfasser: | , , , , |
Format: | Magazinearticle |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, an efficient I/Q management with Q-learning-based transmitter swing adjustment and receiver compensation is developed for energy-efficient 2.5-D memory-logic integration. The proposed approach is able to achieve significant power reduction over other state-of-the-art methods. |
---|---|
ISSN: | 2168-2356 2168-2364 |
DOI: | 10.1109/MDAT.2017.2764075 |