Q-Learning-Based Voltage-Swing Tuning and Compensation for 2.5-D Memory-Logic Integration

In this paper, an efficient I/Q management with Q-learning-based transmitter swing adjustment and receiver compensation is developed for energy-efficient 2.5-D memory-logic integration. The proposed approach is able to achieve significant power reduction over other state-of-the-art methods.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE design and test 2018-04, Vol.35 (2), p.91-99
Hauptverfasser: Xu, Dongjun, Yu, Ningmei, Huang, Hantao, Sai Manoj, P. D., Yu, Hao
Format: Magazinearticle
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, an efficient I/Q management with Q-learning-based transmitter swing adjustment and receiver compensation is developed for energy-efficient 2.5-D memory-logic integration. The proposed approach is able to achieve significant power reduction over other state-of-the-art methods.
ISSN:2168-2356
2168-2364
DOI:10.1109/MDAT.2017.2764075