Weight-Based Rotation Forest for Hyperspectral Image Classification

In this letter, we propose a new weight-based rotation forest (WRoF) induction algorithm for the classification of hyperspectral image. The main idea of the new method is to guide the growth of trees adaptively via exploring the potential of important instances. The importance of a training instance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2017-11, Vol.14 (11), p.2167-2171
Hauptverfasser: Feng, Wei, Bao, Wenxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this letter, we propose a new weight-based rotation forest (WRoF) induction algorithm for the classification of hyperspectral image. The main idea of the new method is to guide the growth of trees adaptively via exploring the potential of important instances. The importance of a training instance is reflected by a dynamic weight function. The higher the weight of an instance, the more the next tree will have to focus on the instance. Experimental results on two real hyperspectral data sets show that the WRoF algorithm results in significant classification improvement compared with random forests and rotation forest.
ISSN:1545-598X
1558-0571
DOI:10.1109/LGRS.2017.2757043