Optimal Electric Vehicle Fast Charging Station Placement Based on Game Theoretical Framework

To reduce the air pollution and improve the energy efficiency, many countries and cities (e.g., Singapore) are on the way of introducing electric vehicles (EVs) to replace the vehicles serving in current traffic system. Effective placement of charging stations is essential for the rapid development...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2018-08, Vol.19 (8), p.2493-2504
Hauptverfasser: Xiong, Yanhai, Gan, Jiarui, An, Bo, Miao, Chunyan, Bazzan, Ana L. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To reduce the air pollution and improve the energy efficiency, many countries and cities (e.g., Singapore) are on the way of introducing electric vehicles (EVs) to replace the vehicles serving in current traffic system. Effective placement of charging stations is essential for the rapid development of EVs, because it is necessary for providing convenience for EVs and ensuring the efficiency of the traffic network. However, existing works mostly concentrate on the mileage anxiety from EV users but ignore their strategic and competitive charging behaviors. To capture the competitive and strategic charging behaviors of the EV users, we consider that an EV user's charging cost, which is dependent on other EV users' choices, consists of the travel cost to access the charging station and the queuing cost in charging stations. First, we formulate the Charging Station Placement Problem (CSPP) as a bilevel optimization problem. Then, by exploiting the equilibrium of the EV charging game, we convert the bilevel optimization problem to a single-level one, following which we analyze the properties of CSPP and propose an algorithm Optimizing eleCtric vEhicle chArging statioN (OCEAN) to compute the optimal allocation of charging stations. Due to OCEAN's scalability issue, we furthermore present a heuristic algorithm OCEAN with Continuous variables to deal with large-scale real-world problems. Finally, we demonstrate and discuss the results of the extensive experiments we did. It is shown that our approach outperform baseline methods significantly.
ISSN:1524-9050
1558-0016
DOI:10.1109/TITS.2017.2754382