Power-Handling Capacity and Nonlinearity Analysis for Distributed Electronic Impedance Synthesizer
With advantages of small size, light weight, and fast tuning capability, electronic impedance synthesizer (EIS) presents game-changing opportunities for industry. However, their widely acceptance is still restrained by the understanding of power-handling capacity and linearity issues. This work addr...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2018-04, Vol.65 (4), p.1340-1348 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With advantages of small size, light weight, and fast tuning capability, electronic impedance synthesizer (EIS) presents game-changing opportunities for industry. However, their widely acceptance is still restrained by the understanding of power-handling capacity and linearity issues. This work addresses both issues through the development of a voltage distribution theory which enables simulating voltage at the position of every PIN diode in the distributed EIS. It provides a way of understanding and predicting the power-handling capacity and nonlinearity of EIS from its linear region. As an example of validation for this theory, a 12-bit EIS along with an automatic measurement setup is presented. Experimental results show a good match among measurement, simulation, and analytical model. The 1 dB compression point (P1dB) of the EIS is larger than 35 dBm, and the third-order input intercept point is larger than 57 dBm. Since the proposed theory is validated, it is possible to be used as a criterion in the optimization process to enhance the power-handling capacity and linearity. Potential applications of such high-linearity EIS can be found in Load-Pull systems, noise measurements, variable impedance loads, tunable matching networks, reconfigurable components, and so on. |
---|---|
ISSN: | 1549-8328 1558-0806 |
DOI: | 10.1109/TCSI.2017.2756020 |