SAR Image Despeckling Using a Convolutional Neural Network

Synthetic aperture radar (SAR) images are often contaminated by a multiplicative noise known as speckle. Speckle makes the processing and interpretation of SAR images difficult. We propose a deep-learning-based approach called, image despeckling convolutional neural network (ID-CNN), for automatical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2017-12, Vol.24 (12), p.1763-1767
Hauptverfasser: Puyang Wang, He Zhang, Patel, Vishal M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Synthetic aperture radar (SAR) images are often contaminated by a multiplicative noise known as speckle. Speckle makes the processing and interpretation of SAR images difficult. We propose a deep-learning-based approach called, image despeckling convolutional neural network (ID-CNN), for automatically removing speckle from the input noisy images. In particular, ID-CNN uses a set of convolutional layers along with batch normalization and rectified linear unit activation function and a componentwise division residual layer to estimate speckle and it is trained in an end-to-end fashion using a combination of Euclidean loss and total variation loss. Extensive experiments on synthetic and real SAR images show that the proposed method achieves significant improvements over the state-of-the-art speckle reduction methods.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2017.2758203