Importance Splitting for Finite-Time Rare Event Simulation

In this note, a general framework is proposed for using importance splitting to estimate rare event probabilities with finite-time constraints. We prove that the splitting estimator is unbiased and characterize the optimal splitting curves. A new unbiased estimator with truncated sample paths is pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2018-06, Vol.63 (6), p.1760-1767
Hauptverfasser: Guangxin Jiang, Fu, Michael C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this note, a general framework is proposed for using importance splitting to estimate rare event probabilities with finite-time constraints. We prove that the splitting estimator is unbiased and characterize the optimal splitting curves. A new unbiased estimator with truncated sample paths is proposed to improve computational efficiency, and a pilot algorithm is provided to determine the optimal truncation and splitting curves. Numerical examples illustrate the optimality of the splitting curves and the effectiveness of the new estimator.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2017.2758171