Design and Analysis of a Three-Phase Wireless Charging System for Lightweight Autonomous Underwater Vehicles

Lightweight autonomous underwater vehicles (AUVs), powered by rechargeable batteries, are widely deployed in inshore surveying, environmental monitoring, and mine countermeasures. While providing valuable information in locations humans have difficulty accessing, limited battery capacity of such sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2018-08, Vol.33 (8), p.6622-6632
Hauptverfasser: Kan, Tianze, Mai, Ruikun, Mercier, Patrick P., Mi, Chunting Chris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lightweight autonomous underwater vehicles (AUVs), powered by rechargeable batteries, are widely deployed in inshore surveying, environmental monitoring, and mine countermeasures. While providing valuable information in locations humans have difficulty accessing, limited battery capacity of such systems prevents extended mission times. In order to extend mission times, this paper proposes a three-phase wireless charging system that could be used in a field-deployable charging station capable of rapid, efficient, and convenient AUV recharging. Wireless charging should not, however, affect instrumentation located inside the AUV. Thus, a three-dimensional finite element analysis tool is employed to study the characteristics of magnetic fields inside the AUV during three-phase charging. Simulation results reveal that the magnetic field generated by the proposed three-phase coil structure is concentrated away from the center of the AUV, where instrumentation would nominally be located. Detailed circuit analysis and compensation method to achieve resonance on both transmitter's and receiver's sides are also given. To validate the proposed concept, a three-phase wireless charging system is developed. Experimental results demonstrate that the system is able to transfer 1.0 kW with a dc-dc efficiency of 92.41% at 465 kHz.
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2017.2757015