Maximization of Total Throughput and Device Lifetime With Non-Linear Battery Properties

This paper considers the maximization of total throughput and device lifetime for point-to-point multiple-input multiple-output communication systems, where a transmission node has a battery which exhibits non-linear battery discharge behaviors. We adopt a battery model called Peukert's law to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2017-12, Vol.16 (12), p.7774-7784
Hauptverfasser: Shin, Hun Min, Park, Seok-Hwan, Jung, Jaehoon, Lee, Sunho, Lee, Inkyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper considers the maximization of total throughput and device lifetime for point-to-point multiple-input multiple-output communication systems, where a transmission node has a battery which exhibits non-linear battery discharge behaviors. We adopt a battery model called Peukert's law to render the non-linear battery characteristics and formulate the battery constraint from Peukert's law. Then, we prove that the total throughput is a strictly concave function in terms of the battery lifetime under the battery constraint. Also, we derive the optimality conditions for the total throughput maximization and device lifetime maximization problems from the strict concavity, and compute the optimal solutions by a bi-section method. Furthermore, we provide a solution based on asymptotic analysis for the case, where the eigenvalue distribution of the channel matrix is not available. In the simulation section, we conduct accurate battery discharge simulations to validate this paper. We confirm that the analysis matches well with the battery simulations, and the derived optimal scheme outperforms the baseline schemes, which neglect the non-linear battery discharge properties. Also, the proposed solution based on asymptotic analysis is shown to have almost the same performance compared with the optimal solution.
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2017.2753783