An Adaptive-Observer-Based Robust Estimator of Multi-sinusoidal Signals

This paper presents an adaptive-observer-based robust estimation methodology of the amplitudes, frequencies, and phases of biased multi-sinusoidal signals in the presence of bounded perturbations on the measurement. The parameters of the sinusoidal components are estimated online, and the update law...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2018-06, Vol.63 (6), p.1618-1631
Hauptverfasser: Chen, Boli, Pin, Gilberto, Ng, Wai M., Hui, Shu Yuen, Parisini, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an adaptive-observer-based robust estimation methodology of the amplitudes, frequencies, and phases of biased multi-sinusoidal signals in the presence of bounded perturbations on the measurement. The parameters of the sinusoidal components are estimated online, and the update laws are individually controlled by an excitation-based switching logic enabling the update of a parameter only when the measured signal is sufficiently informative. This way doing, the algorithm is able to tackle the problem of overparameterization (i.e., when the internal model accounts for a number of sinusoids that is larger than the true spectral content) or temporarily fading sinusoidal components. The stability analysis proves the existence of a tuning parameter set, for which the estimator's dynamics are input-to-state stable with respect to bounded measurement disturbances. The performance of the proposed estimation approach is evaluated and compared with the other existing tools by extensive simulation trials and real-time experiments.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2017.2752007