Optimal recursive filtering, prediction, and smoothing for singular stochastic discrete-time systems
A new and simple approach to optimal recursive filtering, prediction, and smoothing for singular stochastic discrete-time systems is presented by using a time-domain innovation analysis method. The estimators are calculated based on an ARMA innovation model which can be obtained using spectral facto...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 1999-11, Vol.44 (11), p.2154-2158 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new and simple approach to optimal recursive filtering, prediction, and smoothing for singular stochastic discrete-time systems is presented by using a time-domain innovation analysis method. The estimators are calculated based on an ARMA innovation model which can be obtained using spectral factorization or a recursive identifier. The prediction problem for the singular systems is solved with the aid of an output predictor. Further, a simple solution is presented for the complex smoothing problem. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/9.802935 |