Optimal recursive filtering, prediction, and smoothing for singular stochastic discrete-time systems

A new and simple approach to optimal recursive filtering, prediction, and smoothing for singular stochastic discrete-time systems is presented by using a time-domain innovation analysis method. The estimators are calculated based on an ARMA innovation model which can be obtained using spectral facto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 1999-11, Vol.44 (11), p.2154-2158
Hauptverfasser: Zhang, Huanshui, Xie, Lihua, Soh, Yeng C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new and simple approach to optimal recursive filtering, prediction, and smoothing for singular stochastic discrete-time systems is presented by using a time-domain innovation analysis method. The estimators are calculated based on an ARMA innovation model which can be obtained using spectral factorization or a recursive identifier. The prediction problem for the singular systems is solved with the aid of an output predictor. Further, a simple solution is presented for the complex smoothing problem.
ISSN:0018-9286
1558-2523
DOI:10.1109/9.802935