A Novel Adaptive Kalman Filter With Inaccurate Process and Measurement Noise Covariance Matrices

In this paper, a novel variational Bayesian (VB)-based adaptive Kalman filter (VBAKF) for linear Gaussian state-space models with inaccurate process and measurement noise covariance matrices is proposed. By choosing inverse Wishart priors, the state together with the predicted error and measurement...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2018-02, Vol.63 (2), p.594-601
Hauptverfasser: Huang, Yulong, Zhang, Yonggang, Wu, Zhemin, Li, Ning, Chambers, Jonathon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!