A Novel Adaptive Kalman Filter With Inaccurate Process and Measurement Noise Covariance Matrices

In this paper, a novel variational Bayesian (VB)-based adaptive Kalman filter (VBAKF) for linear Gaussian state-space models with inaccurate process and measurement noise covariance matrices is proposed. By choosing inverse Wishart priors, the state together with the predicted error and measurement...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2018-02, Vol.63 (2), p.594-601
Hauptverfasser: Huang, Yulong, Zhang, Yonggang, Wu, Zhemin, Li, Ning, Chambers, Jonathon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a novel variational Bayesian (VB)-based adaptive Kalman filter (VBAKF) for linear Gaussian state-space models with inaccurate process and measurement noise covariance matrices is proposed. By choosing inverse Wishart priors, the state together with the predicted error and measurement noise covariance matrices are inferred based on the VB approach. Simulation results for a target tracking example illustrate that the proposed VBAKF has better robustness to resist the uncertainties of process and measurement noise covariance matrices than existing state-of-the-art filters.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2017.2730480