Event Detection in Continuous Video: An Inference in Point Process Approach
We propose a novel approach toward event detection in real-world continuous video sequences. The method: 1) is able to model arbitrary-order non-Markovian dependences in videos to mitigate local visual ambiguities; 2) conducts simultaneous event segmentation and labeling; and 3) is time-window free....
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2017-12, Vol.26 (12), p.5680-5691 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a novel approach toward event detection in real-world continuous video sequences. The method: 1) is able to model arbitrary-order non-Markovian dependences in videos to mitigate local visual ambiguities; 2) conducts simultaneous event segmentation and labeling; and 3) is time-window free. The idea is to represent a video as an event stream of both high-level semantic events and low-level video observations. In training, we learn a point process model called a piecewise-constant conditional intensity model (PCIM) that is able to capture complex non-Markovian dependences in the event streams. In testing, event detection can be modeled as the inference of high-level semantic events, given low-level image observations. We develop the first inference algorithm for PCIM and show it samples exactly from the posterior distribution. We then evaluate the video event detection task on real-world video sequences. Our model not only provides competitive results on the video event segmentation and labeling task, but also provides benefits, including being interpretable and efficient. |
---|---|
ISSN: | 1057-7149 1941-0042 |
DOI: | 10.1109/TIP.2017.2745209 |