Fault-Tolerant Virtual Backbone in Heterogeneous Wireless Sensor Network
To save energy and alleviate interference, connected dominating set (CDS) was proposed to serve as a virtual backbone of wireless sensor networks (WSNs). Because sensor nodes may fail due to accidental damages or energy depletion, it is desirable to construct a fault tolerant virtual backbone with h...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on networking 2017-12, Vol.25 (6), p.3487-3499 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To save energy and alleviate interference, connected dominating set (CDS) was proposed to serve as a virtual backbone of wireless sensor networks (WSNs). Because sensor nodes may fail due to accidental damages or energy depletion, it is desirable to construct a fault tolerant virtual backbone with high redundancy in both coverage and connectivity. This can be modeled as a k-connected m-fold dominating set (abbreviated as (k, m)-CDS) problem. A node set C ⊆ V (G) is a (k, m)-CDS of graph G if every node in V(G)\C is adjacent with at least m nodes in C and the subgraph of G induced by C is k-connected. Constant approximation algorithm is known for (3, m)-CDS in unit disk graph, which models homogeneous WSNs. In this paper, we present the first performance guaranteed approximation algorithm for (3, m)-CDS in a heterogeneous WSN. In fact, our performance ratio is valid for any topology. The performance ratio is at most γ, where γ = α + 8 + 2 ln(2α - 6) for α ≥ 4 and γ = 3α +2 ln 2 for α |
---|---|
ISSN: | 1063-6692 1558-2566 |
DOI: | 10.1109/TNET.2017.2740328 |