Fusion of Deep Convolutional Neural Networks for Land Cover Classification of High-Resolution Imagery

Deep convolutional neural networks (DCNNs) have recently emerged as the highest performing approach for a number of image classification applications, including automated land cover classification of high-resolution remote-sensing imagery. In this letter, we investigate a variety of fusion technique...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2017-09, Vol.14 (9), p.1638-1642
Hauptverfasser: Scott, Grant J., Marcum, Richard A., Davis, Curt H., Nivin, Tyler W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deep convolutional neural networks (DCNNs) have recently emerged as the highest performing approach for a number of image classification applications, including automated land cover classification of high-resolution remote-sensing imagery. In this letter, we investigate a variety of fusion techniques to blend multiple DCNN land cover classifiers into a single aggregate classifier. While feature-level fusion is widely used with deep neural networks, our approach instead focuses on fusion at the classification/information level. Herein, we train three different DCNNs: CaffeNet, GoogLeNet, and ResNet50. The effectiveness of various information fusion methods, including voting, weighted averages, and fuzzy integrals, is then evaluated. In particular, we used DCNN cross-validation results for the input densities of fuzzy integrals followed by evolutionary optimization. This novel approach produces the state-of-the-art classification results up to 99.3% for the UC Merced data set and the 99.2% for the RSD data set.
ISSN:1545-598X
1558-0571
DOI:10.1109/LGRS.2017.2722988