Stationary Point Characterization for a Class of BCA Algorithms
Bounded component analysis (BCA) is a recently introduced approach including independent component analysis as a special case under the assumption of source boundedness. In this paper, we provide a stationary point analysis for the recently proposed instantaneous BCA algorithms that are capable of s...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2017-10, Vol.65 (20), p.5437-5452 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bounded component analysis (BCA) is a recently introduced approach including independent component analysis as a special case under the assumption of source boundedness. In this paper, we provide a stationary point analysis for the recently proposed instantaneous BCA algorithms that are capable of separating dependent, even correlated as well as independent sources from their mixtures. The stationary points are identified and characterized as either perfect separators, which are the global maxima of the proposed optimization scheme or saddle points. The important result emerging from the analysis is that there are no local optima that can prevent the proposed BCA algorithms from converging to perfect separators. |
---|---|
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/TSP.2017.2731318 |