Nearly Optimal Bounds for Orthogonal Least Squares

In this paper, we study the orthogonal least squares (OLS) algorithm for sparse recovery. On one hand, we show that if the sampling matrix A satisfies the restricted isometry property of order K + 1 with isometry constant δ κ+ 1

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2017-10, Vol.65 (20), p.5347-5356
Hauptverfasser: Wen, Jinming, Wang, Jian, Zhang, Qinyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the orthogonal least squares (OLS) algorithm for sparse recovery. On one hand, we show that if the sampling matrix A satisfies the restricted isometry property of order K + 1 with isometry constant δ κ+ 1
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2017.2728502