Nearly Optimal Bounds for Orthogonal Least Squares
In this paper, we study the orthogonal least squares (OLS) algorithm for sparse recovery. On one hand, we show that if the sampling matrix A satisfies the restricted isometry property of order K + 1 with isometry constant δ κ+ 1
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2017-10, Vol.65 (20), p.5347-5356 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the orthogonal least squares (OLS) algorithm for sparse recovery. On one hand, we show that if the sampling matrix A satisfies the restricted isometry property of order K + 1 with isometry constant δ κ+ 1 |
---|---|
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/TSP.2017.2728502 |