Comparative Study of RESURF Si/SiC LDMOSFETs for High-Temperature Applications Using TCAD Modeling
This paper analyses the effect of employing an Si on semi-insulating SiC (Si/SiC) device architecture for the implementation of 600-V LDMOSFETs using junction isolation and dielectric isolation reduced surface electric field technologies for high-temperature operations up to 300 °C. Simulations are...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2017-09, Vol.64 (9), p.3713-3718 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper analyses the effect of employing an Si on semi-insulating SiC (Si/SiC) device architecture for the implementation of 600-V LDMOSFETs using junction isolation and dielectric isolation reduced surface electric field technologies for high-temperature operations up to 300 °C. Simulations are carried out for two Si/SiC transistors designed with either PN or silicon-on-insulator (SOI) and their equivalent structures employing bulk-Si or SOI substrates. Through comparisons, it is shown that the Si/SiC devices have the potential to operate with an off-state leakage current as low as the SOI device. However, the low-side resistance of the SOI LDMOSFET is smaller in value and less sensitive to temperature, outperforming both Si/SiC devices. Conversely, under high-side configurations, the Si/SiC transistors have resistances lower than that of the SOI at high substrate bias, and invariablewith substrate potential up to -200 V, which behaves similar to the bulk-Si LDMOS at 300 K. Furthermore, the thermal advantage of the Si/SiC over other structures is demonstrated by using a rectanglepower pulse setup in TechnologyComputer-Aided Design simulations. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2017.2719898 |