A simple randomized algorithm for sequential prediction of ergodic time series

We present a simple randomized procedure for the prediction of a binary sequence. The algorithm uses ideas from previous developments of the theory of the prediction of individual sequences. We show that if the sequence is a realization of a stationary and ergodic random process then the average num...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 1999-11, Vol.45 (7), p.2642-2650
Hauptverfasser: Gyorfi, L., Lugosi, G., Morvai, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a simple randomized procedure for the prediction of a binary sequence. The algorithm uses ideas from previous developments of the theory of the prediction of individual sequences. We show that if the sequence is a realization of a stationary and ergodic random process then the average number of mistakes converges, almost surely, to that of the optimum, given by the Bayes predictor. The desirable finite-sample properties of the predictor are illustrated by its performance for Markov processes. In such cases the predictor exhibits near-optimal behavior even without knowing the order of the Markov process. Prediction with side information is also considered.
ISSN:0018-9448
1557-9654
DOI:10.1109/18.796420