Improving Analog Switching in HfOx-Based Resistive Memory With a Thermal Enhanced Layer

Analog RRAM with hundreds of resistance levels is an attractive device for neuromorphic computing. However, it is still very challenging to realize good analog behavior in filamentary RRAM cells. In this letter, we developed a novel methodology to improve the analog switching in filamentary RRAM. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE electron device letters 2017-08, Vol.38 (8), p.1019-1022
Hauptverfasser: Wei Wu, Huaqiang Wu, Bin Gao, Ning Deng, Shimeng Yu, He Qian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Analog RRAM with hundreds of resistance levels is an attractive device for neuromorphic computing. However, it is still very challenging to realize good analog behavior in filamentary RRAM cells. In this letter, we developed a novel methodology to improve the analog switching in filamentary RRAM. The impact of local temperature on analog switching behavior is elucidated. The transition from abrupt switching to analog switching is found at higher temperature. Based on this result, a thermal enhanced layer (TEL) is proposed to confine heat in switching layer for realizing analog RRAM. The HfO x /TEL RRAM shows analog switching characteristics with more than ten times window using 50-ns pulses. Finally, a 1-kb analog RRAM array is demonstrated with uniform analog switching, fast speed, excellent resistance window, and excellent retention properties.
ISSN:0741-3106
1558-0563
DOI:10.1109/LED.2017.2719161