Extended Autofocus Backprojection Algorithm for Low-Frequency SAR Imaging

Since the trajectory deviations of a radar platform cause serious phase errors that degrade the focusing quality of synthetic aperture radar (SAR) imagery, an autofocus method is very important for high-resolution airborne SAR imaging. In this letter, an extended autofocus backprojection (EABP) algo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2017-08, Vol.14 (8), p.1323-1327
Hauptverfasser: Chen, Leping, An, Daoxiang, Huang, Xiaotao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Since the trajectory deviations of a radar platform cause serious phase errors that degrade the focusing quality of synthetic aperture radar (SAR) imagery, an autofocus method is very important for high-resolution airborne SAR imaging. In this letter, an extended autofocus backprojection (EABP) algorithm is developed to accommodate the phase errors. Under the criterion of maximum image sharpness, the traditional ABP algorithm supports a broader class of collection and imaging geometries. However, it neglects the influence of SAR image energy distribution on the estimation of phase errors that make it inapplicable for SAR imaging, which has high dynamic range, such as low-frequency SAR imaging. By choosing regions and balancing the energy distribution of the data, the EABP algorithm is more efficient and useful to avoid the estimation error caused by the unbalanced energy distribution. Its performance has been demonstrated by using the experimental data that are acquired by a P-band airborne SAR system with a low-accuracy global positioning system.
ISSN:1545-598X
1558-0571
DOI:10.1109/LGRS.2017.2711005