Spatiotemporal Saliency Estimation by Spectral Foreground Detection

We present a novel approach for spatiotemporal saliency detection by optimizing a unified criterion of color contrast, motion contrast, appearance, and background cues. To this end, we first abstract the video by temporal superpixels. Second, we propose a novel graph structure exploiting the salienc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2018-01, Vol.20 (1), p.82-95
Hauptverfasser: Aytekin, Caglar, Possegger, Horst, Mauthner, Thomas, Kiranyaz, Serkan, Bischof, Horst, Gabbouj, Moncef
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a novel approach for spatiotemporal saliency detection by optimizing a unified criterion of color contrast, motion contrast, appearance, and background cues. To this end, we first abstract the video by temporal superpixels. Second, we propose a novel graph structure exploiting the saliency cues to assign the edge weights. The salient segments are then extracted by applying a spectral foreground detection method, quantum cuts, on this graph. We evaluate our approach on several public datasets for video saliency and activity localization to demonstrate the favorable performance of the proposed video quantum cuts compared to the state of the art.
ISSN:1520-9210
1941-0077
DOI:10.1109/TMM.2017.2713982