Improving Sparsity and Scalability in Regularized Nonconvex Truncated-Loss Learning Problems
The truncated regular L 1 -loss support vector machine can eliminate the excessive number of support vectors (SVs); thus, it has significant advantages in robustness and scalability. However, in this paper, we discover that the associated state-of-the-art solvers, such as difference convex algorithm...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2018-07, Vol.29 (7), p.2782-2793 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The truncated regular L 1 -loss support vector machine can eliminate the excessive number of support vectors (SVs); thus, it has significant advantages in robustness and scalability. However, in this paper, we discover that the associated state-of-the-art solvers, such as difference convex algorithm and concave-convex procedure, not only have limited sparsity promoting property for general truncated losses especially the L 2 -loss but also have poor scalability for large-scale problems. To circumvent these drawbacks, we present a general multistage scheme with explicit interpretation regarding SVs as well as outliers. In particular, we solve the general nonconvex truncated loss minimization through a sequence of associated convex subproblems, in which the outliers are removed in advance. The proposed algorithm can be regarded as a structural optimization attempt carefully considering sparsity imposed by the nonconvex truncated losses. We show that this general multistage algorithm offers sufficient sparsity especially for the truncated L 2 -loss. To further improve the scalability, we propose a linear multistep algorithm by employing a single iteration of coordinate descent to monotonically decrease the objective function at each stage and a kernel algorithm by using the Karush-Kuhn-Tucker conditions to cheaply find most part of the outliers for the next stage. Comparison experiments demonstrate that our methods have superiority in sparsity as well as efficiency in scalability. |
---|---|
ISSN: | 2162-237X 2162-2388 |
DOI: | 10.1109/TNNLS.2017.2705429 |