Wavelet Packet Transform for Fractional Brownian Motion: Asymptotic Decorrelation and Selection of Best Bases

Our first goal in this paper is to investigate stationarization and asymptotic decorrelation for fractional Brownian motion (fBm) using wavelet packet transform. The wavelet packets are generated by the Nth-order Daubechies scaling function and wavelet. To decorrelate the wavelet packet coefficients...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2017-07, Vol.63 (7), p.4532-4550
1. Verfasser: Yu, Xiaojiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Our first goal in this paper is to investigate stationarization and asymptotic decorrelation for fractional Brownian motion (fBm) using wavelet packet transform. The wavelet packets are generated by the Nth-order Daubechies scaling function and wavelet. To decorrelate the wavelet packet coefficients asymptotically, we take two strategies: fix N and let absolute scale difference or absolute difference between time shifts get large; and fix scale level and time shift and let N get large. Our second goal is to present the asymptotic properties of the entropy-like cost functional and denoising cost functional and their impact on the selection of best wavelet packet bases when used for fBm plus or not plus independent Gaussian white noise.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2017.2700718