Evaluation of a BVH Construction Accelerator Architecture for High-Quality Visualization
The ever-increasing demands of computer graphics applications have motivated the evolution of computer graphics hardware over the last 20 years. Early commodity graphics hardware was largely based on fixed-function components offering little flexibility. The gradual replacement of fixed-function har...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multi-scale computing systems 2018-01, Vol.4 (1), p.83-94 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The ever-increasing demands of computer graphics applications have motivated the evolution of computer graphics hardware over the last 20 years. Early commodity graphics hardware was largely based on fixed-function components offering little flexibility. The gradual replacement of fixed-function hardware with more general-purpose instruction processors, has enabled GPUs to deliver visual experiences more tailored to specific applications. This trend has culminated in modern GPUs essentially being programmable stream processors, capable of supporting a wide variety of applications in and outside of computer graphics. However, the growing concern of power efficiency in modern processors, coupled with an increasing demand for supporting next-generation graphics pipelines, has re-invigorated the debate on the use of fixed-function accelerators in these platforms. In this paper, we conduct a study of a heterogeneous, system-on-chip solution for the construction of a highly important data structure for computer graphics: the bounding volume hierarchy. This design incorporates conventional CPU cores alongside a fixed-function accelerator prototyped on a reconfigurable logic fabric. Our study supports earlier, simulation-only studies which argue for the introduction of this class of accelerator in future graphics processors. |
---|---|
ISSN: | 2332-7766 2332-7766 |
DOI: | 10.1109/TMSCS.2017.2695338 |