Deep Learning for Quality Assessment in Live Video Streaming
Video content providers put stringent requirements on the quality assessment methods realized on their services. They need to be accurate, real-time, adaptable to new content, and scalable as the video set grows. In this letter, we introduce a novel automated and computationally efficient video asse...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2017-06, Vol.24 (6), p.736-740 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 740 |
---|---|
container_issue | 6 |
container_start_page | 736 |
container_title | IEEE signal processing letters |
container_volume | 24 |
creator | Vega, Maria Torres Mocanu, Decebal Constantin Famaey, Jeroen Stavrou, Stavros Liotta, Antonio |
description | Video content providers put stringent requirements on the quality assessment methods realized on their services. They need to be accurate, real-time, adaptable to new content, and scalable as the video set grows. In this letter, we introduce a novel automated and computationally efficient video assessment method. It enables accurate real-time (online) analysis of delivered quality in an adaptable and scalable manner. Offline deep unsupervised learning processes are employed at the server side and inexpensive no-reference measurements at the client side. This provides both real-time assessment and performance comparable to the full reference counterpart, while maintaining its no-reference characteristics. We tested our approach on the LIMP Video Quality Database (an extensive packet loss impaired video set) obtaining a correlation between 78% and 91% to the FR benchmark (the video quality metric). Due to its unsupervised learning essence, our method is flexible and dynamically adaptable to new content and scalable with the number of videos. |
doi_str_mv | 10.1109/LSP.2017.2691160 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7892928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7892928</ieee_id><sourcerecordid>10_1109_LSP_2017_2691160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-e8756a58cffb8a44d9f9845a3dbd368660f73fe5d71344cf50cbbe1a0eb4651e3</originalsourceid><addsrcrecordid>eNo9j1FLwzAUhYMoOKfvgi_5A633Nk2agC9jOhUKKlNfS9reSGRtR1KF_Xs7Nnw65-F8Bz7GrhFSRDC35fo1zQCLNFMGUcEJm6GUOsmEwtOpQwGJMaDP2UWM3wCgUcsZu7sn2vKSbOh9_8XdEPjbj934cccXMVKMHfUj9z0v_S_xT9_SwNdjINtN80t25uwm0tUx5-xj9fC-fErKl8fn5aJMGgFyTEgXUlmpG-dqbfO8Nc7oXFrR1q1QWilwhXAk2wJFnjdOQlPXhBaozpVEEnMGh98mDDEGctU2-M6GXYVQ7e2ryb7a21dH-wm5OSCeiP7nhTaZybT4A-1PVfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deep Learning for Quality Assessment in Live Video Streaming</title><source>IEEE Electronic Library (IEL)</source><creator>Vega, Maria Torres ; Mocanu, Decebal Constantin ; Famaey, Jeroen ; Stavrou, Stavros ; Liotta, Antonio</creator><creatorcontrib>Vega, Maria Torres ; Mocanu, Decebal Constantin ; Famaey, Jeroen ; Stavrou, Stavros ; Liotta, Antonio</creatorcontrib><description>Video content providers put stringent requirements on the quality assessment methods realized on their services. They need to be accurate, real-time, adaptable to new content, and scalable as the video set grows. In this letter, we introduce a novel automated and computationally efficient video assessment method. It enables accurate real-time (online) analysis of delivered quality in an adaptable and scalable manner. Offline deep unsupervised learning processes are employed at the server side and inexpensive no-reference measurements at the client side. This provides both real-time assessment and performance comparable to the full reference counterpart, while maintaining its no-reference characteristics. We tested our approach on the LIMP Video Quality Database (an extensive packet loss impaired video set) obtaining a correlation between 78% and 91% to the FR benchmark (the video quality metric). Due to its unsupervised learning essence, our method is flexible and dynamically adaptable to new content and scalable with the number of videos.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2017.2691160</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Deep learning (DL) ; Feature extraction ; Machine learning ; Measurement ; multimedia video services ; Quality assessment ; Real-time systems ; Streaming media ; unsupervised learning (UL) ; video quality assessment</subject><ispartof>IEEE signal processing letters, 2017-06, Vol.24 (6), p.736-740</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-e8756a58cffb8a44d9f9845a3dbd368660f73fe5d71344cf50cbbe1a0eb4651e3</citedby><cites>FETCH-LOGICAL-c305t-e8756a58cffb8a44d9f9845a3dbd368660f73fe5d71344cf50cbbe1a0eb4651e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7892928$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7892928$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vega, Maria Torres</creatorcontrib><creatorcontrib>Mocanu, Decebal Constantin</creatorcontrib><creatorcontrib>Famaey, Jeroen</creatorcontrib><creatorcontrib>Stavrou, Stavros</creatorcontrib><creatorcontrib>Liotta, Antonio</creatorcontrib><title>Deep Learning for Quality Assessment in Live Video Streaming</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>Video content providers put stringent requirements on the quality assessment methods realized on their services. They need to be accurate, real-time, adaptable to new content, and scalable as the video set grows. In this letter, we introduce a novel automated and computationally efficient video assessment method. It enables accurate real-time (online) analysis of delivered quality in an adaptable and scalable manner. Offline deep unsupervised learning processes are employed at the server side and inexpensive no-reference measurements at the client side. This provides both real-time assessment and performance comparable to the full reference counterpart, while maintaining its no-reference characteristics. We tested our approach on the LIMP Video Quality Database (an extensive packet loss impaired video set) obtaining a correlation between 78% and 91% to the FR benchmark (the video quality metric). Due to its unsupervised learning essence, our method is flexible and dynamically adaptable to new content and scalable with the number of videos.</description><subject>Deep learning (DL)</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Measurement</subject><subject>multimedia video services</subject><subject>Quality assessment</subject><subject>Real-time systems</subject><subject>Streaming media</subject><subject>unsupervised learning (UL)</subject><subject>video quality assessment</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j1FLwzAUhYMoOKfvgi_5A633Nk2agC9jOhUKKlNfS9reSGRtR1KF_Xs7Nnw65-F8Bz7GrhFSRDC35fo1zQCLNFMGUcEJm6GUOsmEwtOpQwGJMaDP2UWM3wCgUcsZu7sn2vKSbOh9_8XdEPjbj934cccXMVKMHfUj9z0v_S_xT9_SwNdjINtN80t25uwm0tUx5-xj9fC-fErKl8fn5aJMGgFyTEgXUlmpG-dqbfO8Nc7oXFrR1q1QWilwhXAk2wJFnjdOQlPXhBaozpVEEnMGh98mDDEGctU2-M6GXYVQ7e2ryb7a21dH-wm5OSCeiP7nhTaZybT4A-1PVfg</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Vega, Maria Torres</creator><creator>Mocanu, Decebal Constantin</creator><creator>Famaey, Jeroen</creator><creator>Stavrou, Stavros</creator><creator>Liotta, Antonio</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201706</creationdate><title>Deep Learning for Quality Assessment in Live Video Streaming</title><author>Vega, Maria Torres ; Mocanu, Decebal Constantin ; Famaey, Jeroen ; Stavrou, Stavros ; Liotta, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-e8756a58cffb8a44d9f9845a3dbd368660f73fe5d71344cf50cbbe1a0eb4651e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Deep learning (DL)</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Measurement</topic><topic>multimedia video services</topic><topic>Quality assessment</topic><topic>Real-time systems</topic><topic>Streaming media</topic><topic>unsupervised learning (UL)</topic><topic>video quality assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vega, Maria Torres</creatorcontrib><creatorcontrib>Mocanu, Decebal Constantin</creatorcontrib><creatorcontrib>Famaey, Jeroen</creatorcontrib><creatorcontrib>Stavrou, Stavros</creatorcontrib><creatorcontrib>Liotta, Antonio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vega, Maria Torres</au><au>Mocanu, Decebal Constantin</au><au>Famaey, Jeroen</au><au>Stavrou, Stavros</au><au>Liotta, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning for Quality Assessment in Live Video Streaming</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2017-06</date><risdate>2017</risdate><volume>24</volume><issue>6</issue><spage>736</spage><epage>740</epage><pages>736-740</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>Video content providers put stringent requirements on the quality assessment methods realized on their services. They need to be accurate, real-time, adaptable to new content, and scalable as the video set grows. In this letter, we introduce a novel automated and computationally efficient video assessment method. It enables accurate real-time (online) analysis of delivered quality in an adaptable and scalable manner. Offline deep unsupervised learning processes are employed at the server side and inexpensive no-reference measurements at the client side. This provides both real-time assessment and performance comparable to the full reference counterpart, while maintaining its no-reference characteristics. We tested our approach on the LIMP Video Quality Database (an extensive packet loss impaired video set) obtaining a correlation between 78% and 91% to the FR benchmark (the video quality metric). Due to its unsupervised learning essence, our method is flexible and dynamically adaptable to new content and scalable with the number of videos.</abstract><pub>IEEE</pub><doi>10.1109/LSP.2017.2691160</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2017-06, Vol.24 (6), p.736-740 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_ieee_primary_7892928 |
source | IEEE Electronic Library (IEL) |
subjects | Deep learning (DL) Feature extraction Machine learning Measurement multimedia video services Quality assessment Real-time systems Streaming media unsupervised learning (UL) video quality assessment |
title | Deep Learning for Quality Assessment in Live Video Streaming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A37%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20for%20Quality%20Assessment%20in%20Live%20Video%20Streaming&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Vega,%20Maria%20Torres&rft.date=2017-06&rft.volume=24&rft.issue=6&rft.spage=736&rft.epage=740&rft.pages=736-740&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2017.2691160&rft_dat=%3Ccrossref_RIE%3E10_1109_LSP_2017_2691160%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7892928&rfr_iscdi=true |