Deep Learning for Quality Assessment in Live Video Streaming

Video content providers put stringent requirements on the quality assessment methods realized on their services. They need to be accurate, real-time, adaptable to new content, and scalable as the video set grows. In this letter, we introduce a novel automated and computationally efficient video asse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2017-06, Vol.24 (6), p.736-740
Hauptverfasser: Vega, Maria Torres, Mocanu, Decebal Constantin, Famaey, Jeroen, Stavrou, Stavros, Liotta, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 740
container_issue 6
container_start_page 736
container_title IEEE signal processing letters
container_volume 24
creator Vega, Maria Torres
Mocanu, Decebal Constantin
Famaey, Jeroen
Stavrou, Stavros
Liotta, Antonio
description Video content providers put stringent requirements on the quality assessment methods realized on their services. They need to be accurate, real-time, adaptable to new content, and scalable as the video set grows. In this letter, we introduce a novel automated and computationally efficient video assessment method. It enables accurate real-time (online) analysis of delivered quality in an adaptable and scalable manner. Offline deep unsupervised learning processes are employed at the server side and inexpensive no-reference measurements at the client side. This provides both real-time assessment and performance comparable to the full reference counterpart, while maintaining its no-reference characteristics. We tested our approach on the LIMP Video Quality Database (an extensive packet loss impaired video set) obtaining a correlation between 78% and 91% to the FR benchmark (the video quality metric). Due to its unsupervised learning essence, our method is flexible and dynamically adaptable to new content and scalable with the number of videos.
doi_str_mv 10.1109/LSP.2017.2691160
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7892928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7892928</ieee_id><sourcerecordid>10_1109_LSP_2017_2691160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-e8756a58cffb8a44d9f9845a3dbd368660f73fe5d71344cf50cbbe1a0eb4651e3</originalsourceid><addsrcrecordid>eNo9j1FLwzAUhYMoOKfvgi_5A633Nk2agC9jOhUKKlNfS9reSGRtR1KF_Xs7Nnw65-F8Bz7GrhFSRDC35fo1zQCLNFMGUcEJm6GUOsmEwtOpQwGJMaDP2UWM3wCgUcsZu7sn2vKSbOh9_8XdEPjbj934cccXMVKMHfUj9z0v_S_xT9_SwNdjINtN80t25uwm0tUx5-xj9fC-fErKl8fn5aJMGgFyTEgXUlmpG-dqbfO8Nc7oXFrR1q1QWilwhXAk2wJFnjdOQlPXhBaozpVEEnMGh98mDDEGctU2-M6GXYVQ7e2ryb7a21dH-wm5OSCeiP7nhTaZybT4A-1PVfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deep Learning for Quality Assessment in Live Video Streaming</title><source>IEEE Electronic Library (IEL)</source><creator>Vega, Maria Torres ; Mocanu, Decebal Constantin ; Famaey, Jeroen ; Stavrou, Stavros ; Liotta, Antonio</creator><creatorcontrib>Vega, Maria Torres ; Mocanu, Decebal Constantin ; Famaey, Jeroen ; Stavrou, Stavros ; Liotta, Antonio</creatorcontrib><description>Video content providers put stringent requirements on the quality assessment methods realized on their services. They need to be accurate, real-time, adaptable to new content, and scalable as the video set grows. In this letter, we introduce a novel automated and computationally efficient video assessment method. It enables accurate real-time (online) analysis of delivered quality in an adaptable and scalable manner. Offline deep unsupervised learning processes are employed at the server side and inexpensive no-reference measurements at the client side. This provides both real-time assessment and performance comparable to the full reference counterpart, while maintaining its no-reference characteristics. We tested our approach on the LIMP Video Quality Database (an extensive packet loss impaired video set) obtaining a correlation between 78% and 91% to the FR benchmark (the video quality metric). Due to its unsupervised learning essence, our method is flexible and dynamically adaptable to new content and scalable with the number of videos.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2017.2691160</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Deep learning (DL) ; Feature extraction ; Machine learning ; Measurement ; multimedia video services ; Quality assessment ; Real-time systems ; Streaming media ; unsupervised learning (UL) ; video quality assessment</subject><ispartof>IEEE signal processing letters, 2017-06, Vol.24 (6), p.736-740</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-e8756a58cffb8a44d9f9845a3dbd368660f73fe5d71344cf50cbbe1a0eb4651e3</citedby><cites>FETCH-LOGICAL-c305t-e8756a58cffb8a44d9f9845a3dbd368660f73fe5d71344cf50cbbe1a0eb4651e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7892928$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7892928$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vega, Maria Torres</creatorcontrib><creatorcontrib>Mocanu, Decebal Constantin</creatorcontrib><creatorcontrib>Famaey, Jeroen</creatorcontrib><creatorcontrib>Stavrou, Stavros</creatorcontrib><creatorcontrib>Liotta, Antonio</creatorcontrib><title>Deep Learning for Quality Assessment in Live Video Streaming</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>Video content providers put stringent requirements on the quality assessment methods realized on their services. They need to be accurate, real-time, adaptable to new content, and scalable as the video set grows. In this letter, we introduce a novel automated and computationally efficient video assessment method. It enables accurate real-time (online) analysis of delivered quality in an adaptable and scalable manner. Offline deep unsupervised learning processes are employed at the server side and inexpensive no-reference measurements at the client side. This provides both real-time assessment and performance comparable to the full reference counterpart, while maintaining its no-reference characteristics. We tested our approach on the LIMP Video Quality Database (an extensive packet loss impaired video set) obtaining a correlation between 78% and 91% to the FR benchmark (the video quality metric). Due to its unsupervised learning essence, our method is flexible and dynamically adaptable to new content and scalable with the number of videos.</description><subject>Deep learning (DL)</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Measurement</subject><subject>multimedia video services</subject><subject>Quality assessment</subject><subject>Real-time systems</subject><subject>Streaming media</subject><subject>unsupervised learning (UL)</subject><subject>video quality assessment</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j1FLwzAUhYMoOKfvgi_5A633Nk2agC9jOhUKKlNfS9reSGRtR1KF_Xs7Nnw65-F8Bz7GrhFSRDC35fo1zQCLNFMGUcEJm6GUOsmEwtOpQwGJMaDP2UWM3wCgUcsZu7sn2vKSbOh9_8XdEPjbj934cccXMVKMHfUj9z0v_S_xT9_SwNdjINtN80t25uwm0tUx5-xj9fC-fErKl8fn5aJMGgFyTEgXUlmpG-dqbfO8Nc7oXFrR1q1QWilwhXAk2wJFnjdOQlPXhBaozpVEEnMGh98mDDEGctU2-M6GXYVQ7e2ryb7a21dH-wm5OSCeiP7nhTaZybT4A-1PVfg</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Vega, Maria Torres</creator><creator>Mocanu, Decebal Constantin</creator><creator>Famaey, Jeroen</creator><creator>Stavrou, Stavros</creator><creator>Liotta, Antonio</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201706</creationdate><title>Deep Learning for Quality Assessment in Live Video Streaming</title><author>Vega, Maria Torres ; Mocanu, Decebal Constantin ; Famaey, Jeroen ; Stavrou, Stavros ; Liotta, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-e8756a58cffb8a44d9f9845a3dbd368660f73fe5d71344cf50cbbe1a0eb4651e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Deep learning (DL)</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Measurement</topic><topic>multimedia video services</topic><topic>Quality assessment</topic><topic>Real-time systems</topic><topic>Streaming media</topic><topic>unsupervised learning (UL)</topic><topic>video quality assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vega, Maria Torres</creatorcontrib><creatorcontrib>Mocanu, Decebal Constantin</creatorcontrib><creatorcontrib>Famaey, Jeroen</creatorcontrib><creatorcontrib>Stavrou, Stavros</creatorcontrib><creatorcontrib>Liotta, Antonio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vega, Maria Torres</au><au>Mocanu, Decebal Constantin</au><au>Famaey, Jeroen</au><au>Stavrou, Stavros</au><au>Liotta, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning for Quality Assessment in Live Video Streaming</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2017-06</date><risdate>2017</risdate><volume>24</volume><issue>6</issue><spage>736</spage><epage>740</epage><pages>736-740</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>Video content providers put stringent requirements on the quality assessment methods realized on their services. They need to be accurate, real-time, adaptable to new content, and scalable as the video set grows. In this letter, we introduce a novel automated and computationally efficient video assessment method. It enables accurate real-time (online) analysis of delivered quality in an adaptable and scalable manner. Offline deep unsupervised learning processes are employed at the server side and inexpensive no-reference measurements at the client side. This provides both real-time assessment and performance comparable to the full reference counterpart, while maintaining its no-reference characteristics. We tested our approach on the LIMP Video Quality Database (an extensive packet loss impaired video set) obtaining a correlation between 78% and 91% to the FR benchmark (the video quality metric). Due to its unsupervised learning essence, our method is flexible and dynamically adaptable to new content and scalable with the number of videos.</abstract><pub>IEEE</pub><doi>10.1109/LSP.2017.2691160</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2017-06, Vol.24 (6), p.736-740
issn 1070-9908
1558-2361
language eng
recordid cdi_ieee_primary_7892928
source IEEE Electronic Library (IEL)
subjects Deep learning (DL)
Feature extraction
Machine learning
Measurement
multimedia video services
Quality assessment
Real-time systems
Streaming media
unsupervised learning (UL)
video quality assessment
title Deep Learning for Quality Assessment in Live Video Streaming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A37%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20for%20Quality%20Assessment%20in%20Live%20Video%20Streaming&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Vega,%20Maria%20Torres&rft.date=2017-06&rft.volume=24&rft.issue=6&rft.spage=736&rft.epage=740&rft.pages=736-740&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2017.2691160&rft_dat=%3Ccrossref_RIE%3E10_1109_LSP_2017_2691160%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7892928&rfr_iscdi=true