Deep Learning for Quality Assessment in Live Video Streaming
Video content providers put stringent requirements on the quality assessment methods realized on their services. They need to be accurate, real-time, adaptable to new content, and scalable as the video set grows. In this letter, we introduce a novel automated and computationally efficient video asse...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2017-06, Vol.24 (6), p.736-740 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Video content providers put stringent requirements on the quality assessment methods realized on their services. They need to be accurate, real-time, adaptable to new content, and scalable as the video set grows. In this letter, we introduce a novel automated and computationally efficient video assessment method. It enables accurate real-time (online) analysis of delivered quality in an adaptable and scalable manner. Offline deep unsupervised learning processes are employed at the server side and inexpensive no-reference measurements at the client side. This provides both real-time assessment and performance comparable to the full reference counterpart, while maintaining its no-reference characteristics. We tested our approach on the LIMP Video Quality Database (an extensive packet loss impaired video set) obtaining a correlation between 78% and 91% to the FR benchmark (the video quality metric). Due to its unsupervised learning essence, our method is flexible and dynamically adaptable to new content and scalable with the number of videos. |
---|---|
ISSN: | 1070-9908 1558-2361 |
DOI: | 10.1109/LSP.2017.2691160 |