The Input-to-State Stable (ISS) Approach for Stabilizing Haptic Interaction With Virtual Environments
Passivity has been a major criterion for designing a stable haptic interface due to its numerous advantages. However, passivity-based controllers have suffered from the design conservatism of the passivity criterion, particularly when users want to increase the maximum apparent impedance. Based on t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on robotics 2017-08, Vol.33 (4), p.948-963 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Passivity has been a major criterion for designing a stable haptic interface due to its numerous advantages. However, passivity-based controllers have suffered from the design conservatism of the passivity criterion, particularly when users want to increase the maximum apparent impedance. Based on the input-to-state stable (ISS) criterion and an analogy between haptic interfaces and systems with hysteresis, this paper proposes a control framework that is less conservative than passivity-based controllers. The proposed ISS approach allows a non-predetermined finite amount of output energy to be extracted from the system. Therefore, the proposed method can increase the maximum apparent impedance compared with passivity-based approaches. The focus of this paper is on how the proposed approach is designed to satisfy the input-to-state stability criterion in real time without prior knowledge of the system. This paper also extends the primary single-port ISS approach to a two-port ISS approach for multiple-degree-of-freedom generalization. The experimental and numerical results demonstrate that the proposed ISS approach is able to stabilize a higher impedance range than the time-domain passivity approach. The experimental results also confirm that the proposed approach provides higher actual apparent impedance to the operator compared with the energy-bounding and force-bounding approaches. |
---|---|
ISSN: | 1552-3098 1941-0468 |
DOI: | 10.1109/TRO.2017.2676127 |