Stability Analysis and Application for Delayed Neural Networks Driven by Fractional Brownian Noise

This paper deals with two types of the stability problem for the delayed neural networks driven by fractional Brownian noise (FBN). The existence and the uniqueness of the solution to the main system with respect to FBN are proved via fixed point theory. Based on Hilbert-Schmidt operator theory and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2018-05, Vol.29 (5), p.1491-1502
Hauptverfasser: Zhou, Wuneng, Zhou, Xianghui, Yang, Jun, Zhou, Jun, Tong, Dongbing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with two types of the stability problem for the delayed neural networks driven by fractional Brownian noise (FBN). The existence and the uniqueness of the solution to the main system with respect to FBN are proved via fixed point theory. Based on Hilbert-Schmidt operator theory and analytic semigroup principle, the mild solution of the stochastic neural networks is obtained. By applying the stochastic analytic technique and some well-known inequalities, the asymptotic stability criteria and the exponential stability condition are established. Both numerical example and practical application for synchronization control of multiagent system are provided to illustrate the effectiveness and potential of the proposed techniques.
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2017.2674692