Heart sound classification using deep structured features

We present a novel machine learning-based method for heart sound classification which we submitted to the PhysioNet/CinC Challenge 2016. Our method relies on a robust feature representation - generated by a wavelet-based deep convolutional neural network (CNN) - of each cardiac cycle in the test rec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tschannen, Michael, Kramer, Thomas, Marti, Gian, Heinzmann, Matthias, Wiatowski, Thomas
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a novel machine learning-based method for heart sound classification which we submitted to the PhysioNet/CinC Challenge 2016. Our method relies on a robust feature representation - generated by a wavelet-based deep convolutional neural network (CNN) - of each cardiac cycle in the test recording, and support vector machine classification. In addition to the CNN-based features, our method incorporates physiological and spectral features to summarize the characteristics of the entire test recording. The proposed method obtained a score, sensitivity, and specificity of 0.812, 0.848, and 0.776, respectively, on the hidden challenge testing set.
ISSN:2325-887X
DOI:10.22489/cinc.2016.162-186