Improving KPCA Online Extraction by Orthonormalization in the Feature Space

Recently, some online kernel principal component analysis (KPCA) techniques based on the generalized Hebbian algorithm (GHA) were proposed for use in large data sets, defining kernel components using concise dictionaries automatically extracted from data. This brief proposes two new online KPCA extr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2018-04, Vol.29 (4), p.1382-1387
Hauptverfasser: Souza Filho, Joao B. O., Diniz, Paulo S. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, some online kernel principal component analysis (KPCA) techniques based on the generalized Hebbian algorithm (GHA) were proposed for use in large data sets, defining kernel components using concise dictionaries automatically extracted from data. This brief proposes two new online KPCA extraction algorithms, exploiting orthogonalized versions of the GHA rule. In both the cases, the orthogonalization of kernel components is achieved by the inclusion of some low complexity additional steps to the kernel Hebbian algorithm, thus not substantially affecting the computational cost of the algorithm. Results show improved convergence speed and accuracy of components extracted by the proposed methods, as compared with the state-of-the-art online KPCA extraction algorithms.
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2017.2660441