Progress Overview of Capturing Method for Integral 3-D Imaging Displays
An integral 3-D technique provides a 3-D spatial image viewable from varying positions without the use of special light sources or viewing glasses. Therefore, this technique shows promise for diverse applications in various fields, including 3-D television broadcasting, advertising, and medical diag...
Gespeichert in:
Veröffentlicht in: | Proceedings of the IEEE 2017-05, Vol.105 (5), p.837-849 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An integral 3-D technique provides a 3-D spatial image viewable from varying positions without the use of special light sources or viewing glasses. Therefore, this technique shows promise for diverse applications in various fields, including 3-D television broadcasting, advertising, and medical diagnostics. However, there are problems in capturing and displaying large amounts of information in realizing practical integral imaging devices. This paper overviews integral 3-D capturing methods and analyzes integral 3-D imaging technology at its capturing and displaying stages. To overcome the resolution problem, it also introduces our recent work for capturing high-resolution integral imaging information. The introduced device consists of a multiple-lens array and a complementary metal-oxide-semiconductor image sensor with a circuit patterned using multiple exposures. This device can capture depth-controlled spatial information by introducing additional optics. Two types of optics for depth control are applied to the capturing device: one functions as a convex lens to control and compress a relatively large object space and the other functions as an afocal lens array that controls a relatively small object space without any distortion in the depthwise direction. Experimental results of spatial information capturing and 3-D image displays confirm that the method produces 3-D images having an appropriate motion parallax. The presented method is scalable; thus, this technique offers possibilities for developing advanced high-resolution integral 3-D imaging devices. |
---|---|
ISSN: | 0018-9219 1558-2256 |
DOI: | 10.1109/JPROC.2017.2652541 |