A Kriging-Based Optimization Approach for Large Data Sets Exploiting Points Aggregation Techniques

A kriging-based optimization approach is proposed for problems with large data sets and high dimensionality. Memory usage is maintained via model centering aided by minimizing the impact of information loss on accuracy of new point prediction using points aggregation techniques. The eight-parameter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2017-06, Vol.53 (6), p.1-4
Hauptverfasser: Yinjiang Li, Song Xiao, Rotaru, Mihai, Sykulski, Jan K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A kriging-based optimization approach is proposed for problems with large data sets and high dimensionality. Memory usage is maintained via model centering aided by minimizing the impact of information loss on accuracy of new point prediction using points aggregation techniques. The eight-parameter TEAM problem 22 is revisited in the context of computational efficiency and accuracy.
ISSN:0018-9464
1941-0069
DOI:10.1109/TMAG.2017.2665703