Nonlinear Eigenvalue Approach to Differential Riccati Equations for Contraction Analysis

In this paper, we extend the eigenvalue method of the algebraic Riccati equation to the differential Riccati equation (DRE) in contraction analysis. One of the main results is showing that solutions to the DRE can be expressed as functions of nonlinear eigenvectors of the differential Hamiltonian ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2017-12, Vol.62 (12), p.6497-6504
Hauptverfasser: Kawano, Yu, Ohtsuka, Toshiyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we extend the eigenvalue method of the algebraic Riccati equation to the differential Riccati equation (DRE) in contraction analysis. One of the main results is showing that solutions to the DRE can be expressed as functions of nonlinear eigenvectors of the differential Hamiltonian matrix. Moreover, under an assumption for the differential Hamiltonian matrix, real symmetry, regularity, and positive semidefiniteness of solutions are characterized by nonlinear eigenvalues and eigenvectors.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2017.2655443