An Extreme Learning Machine Approach to Density Estimation Problems
In this paper, we discuss how the extreme learning machine (ELM) framework can be effectively employed in the unsupervised context of multivariate density estimation. In particular, two algorithms are introduced, one for the estimation of the cumulative distribution function underlying the observed...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cybernetics 2017-10, Vol.47 (10), p.3254-3265 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3265 |
---|---|
container_issue | 10 |
container_start_page | 3254 |
container_title | IEEE transactions on cybernetics |
container_volume | 47 |
creator | Cervellera, Cristiano Maccio, Danilo |
description | In this paper, we discuss how the extreme learning machine (ELM) framework can be effectively employed in the unsupervised context of multivariate density estimation. In particular, two algorithms are introduced, one for the estimation of the cumulative distribution function underlying the observed data, and one for the estimation of the probability density function. The algorithms rely on the concept of F-discrepancy, which is closely related to the Kolmogorov-Smirnov criterion for goodness of fit. Both methods retain the key feature of the ELM of providing the solution through random assignment of the hidden feature map and a very light computational burden. A theoretical analysis is provided, discussing convergence under proper hypotheses on the chosen activation functions. Simulation tests show how ELMs can be successfully employed in the density estimation framework, as a possible alternative to other standard methods. |
doi_str_mv | 10.1109/TCYB.2017.2648261 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7820121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7820121</ieee_id><sourcerecordid>1861582688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-a3ce804a923565f73b09b82c789ec994327a4fb987e3143a78d854040855285b3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0Eoqj0ByAkFImFJcUfcXweSygfUhEMZWCynPQCqZqk2IlE_z2uWjrgxafzc6_ODyEXjI4Zo_p2nn3cjTllaszTBHjKjsgZZynEnCt5fKhTNSAj75c0HAgtDadkwIFRIRU9I9mkiaY_ncMaoxla11TNZ_Rii6-qwWiyXrs21FHXRvfY-KrbRFPfVbXtqraJ3lybr7D25-SktCuPo_09JO8P03n2FM9eH5-zySwuRKK72IoCgSZWcyFTWSqRU50DLxRoLLROBFc2KXMNCgVLhFWwAJnQhIKUHGQuhuRmlxu2-u7Rd6aufIGrlW2w7b1hkDIZTAAE9Pofumx714TtDNMi5ZJrKQLFdlThWu8dlmbtwufcxjBqtpLNVrLZSjZ7yWHmap_c5zUuDhN_SgNwuQMqRDw8KwgpnIlfdjR8-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1936252953</pqid></control><display><type>article</type><title>An Extreme Learning Machine Approach to Density Estimation Problems</title><source>IEEE Electronic Library (IEL)</source><creator>Cervellera, Cristiano ; Maccio, Danilo</creator><creatorcontrib>Cervellera, Cristiano ; Maccio, Danilo</creatorcontrib><description>In this paper, we discuss how the extreme learning machine (ELM) framework can be effectively employed in the unsupervised context of multivariate density estimation. In particular, two algorithms are introduced, one for the estimation of the cumulative distribution function underlying the observed data, and one for the estimation of the probability density function. The algorithms rely on the concept of F-discrepancy, which is closely related to the Kolmogorov-Smirnov criterion for goodness of fit. Both methods retain the key feature of the ELM of providing the solution through random assignment of the hidden feature map and a very light computational burden. A theoretical analysis is provided, discussing convergence under proper hypotheses on the chosen activation functions. Simulation tests show how ELMs can be successfully employed in the density estimation framework, as a possible alternative to other standard methods.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2017.2648261</identifier><identifier>PMID: 28103570</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">F -discrepancy ; Algorithm design and analysis ; Algorithms ; Approximation algorithms ; Computer simulation ; Context ; Density ; Density estimation ; Economic models ; Estimation ; extreme learning machine (ELM) ; Goodness of fit ; Kernel ; Neural networks ; Sample size ; unsupervised learning</subject><ispartof>IEEE transactions on cybernetics, 2017-10, Vol.47 (10), p.3254-3265</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-a3ce804a923565f73b09b82c789ec994327a4fb987e3143a78d854040855285b3</citedby><cites>FETCH-LOGICAL-c349t-a3ce804a923565f73b09b82c789ec994327a4fb987e3143a78d854040855285b3</cites><orcidid>0000-0003-2017-0448</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7820121$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7820121$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28103570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cervellera, Cristiano</creatorcontrib><creatorcontrib>Maccio, Danilo</creatorcontrib><title>An Extreme Learning Machine Approach to Density Estimation Problems</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>In this paper, we discuss how the extreme learning machine (ELM) framework can be effectively employed in the unsupervised context of multivariate density estimation. In particular, two algorithms are introduced, one for the estimation of the cumulative distribution function underlying the observed data, and one for the estimation of the probability density function. The algorithms rely on the concept of F-discrepancy, which is closely related to the Kolmogorov-Smirnov criterion for goodness of fit. Both methods retain the key feature of the ELM of providing the solution through random assignment of the hidden feature map and a very light computational burden. A theoretical analysis is provided, discussing convergence under proper hypotheses on the chosen activation functions. Simulation tests show how ELMs can be successfully employed in the density estimation framework, as a possible alternative to other standard methods.</description><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">F -discrepancy</subject><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>Computer simulation</subject><subject>Context</subject><subject>Density</subject><subject>Density estimation</subject><subject>Economic models</subject><subject>Estimation</subject><subject>extreme learning machine (ELM)</subject><subject>Goodness of fit</subject><subject>Kernel</subject><subject>Neural networks</subject><subject>Sample size</subject><subject>unsupervised learning</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQhi0Eoqj0ByAkFImFJcUfcXweSygfUhEMZWCynPQCqZqk2IlE_z2uWjrgxafzc6_ODyEXjI4Zo_p2nn3cjTllaszTBHjKjsgZZynEnCt5fKhTNSAj75c0HAgtDadkwIFRIRU9I9mkiaY_ncMaoxla11TNZ_Rii6-qwWiyXrs21FHXRvfY-KrbRFPfVbXtqraJ3lybr7D25-SktCuPo_09JO8P03n2FM9eH5-zySwuRKK72IoCgSZWcyFTWSqRU50DLxRoLLROBFc2KXMNCgVLhFWwAJnQhIKUHGQuhuRmlxu2-u7Rd6aufIGrlW2w7b1hkDIZTAAE9Pofumx714TtDNMi5ZJrKQLFdlThWu8dlmbtwufcxjBqtpLNVrLZSjZ7yWHmap_c5zUuDhN_SgNwuQMqRDw8KwgpnIlfdjR8-A</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Cervellera, Cristiano</creator><creator>Maccio, Danilo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2017-0448</orcidid></search><sort><creationdate>20171001</creationdate><title>An Extreme Learning Machine Approach to Density Estimation Problems</title><author>Cervellera, Cristiano ; Maccio, Danilo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-a3ce804a923565f73b09b82c789ec994327a4fb987e3143a78d854040855285b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">F -discrepancy</topic><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>Computer simulation</topic><topic>Context</topic><topic>Density</topic><topic>Density estimation</topic><topic>Economic models</topic><topic>Estimation</topic><topic>extreme learning machine (ELM)</topic><topic>Goodness of fit</topic><topic>Kernel</topic><topic>Neural networks</topic><topic>Sample size</topic><topic>unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cervellera, Cristiano</creatorcontrib><creatorcontrib>Maccio, Danilo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cervellera, Cristiano</au><au>Maccio, Danilo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Extreme Learning Machine Approach to Density Estimation Problems</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>47</volume><issue>10</issue><spage>3254</spage><epage>3265</epage><pages>3254-3265</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>In this paper, we discuss how the extreme learning machine (ELM) framework can be effectively employed in the unsupervised context of multivariate density estimation. In particular, two algorithms are introduced, one for the estimation of the cumulative distribution function underlying the observed data, and one for the estimation of the probability density function. The algorithms rely on the concept of F-discrepancy, which is closely related to the Kolmogorov-Smirnov criterion for goodness of fit. Both methods retain the key feature of the ELM of providing the solution through random assignment of the hidden feature map and a very light computational burden. A theoretical analysis is provided, discussing convergence under proper hypotheses on the chosen activation functions. Simulation tests show how ELMs can be successfully employed in the density estimation framework, as a possible alternative to other standard methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28103570</pmid><doi>10.1109/TCYB.2017.2648261</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2017-0448</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2267 |
ispartof | IEEE transactions on cybernetics, 2017-10, Vol.47 (10), p.3254-3265 |
issn | 2168-2267 2168-2275 |
language | eng |
recordid | cdi_ieee_primary_7820121 |
source | IEEE Electronic Library (IEL) |
subjects | <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">F -discrepancy Algorithm design and analysis Algorithms Approximation algorithms Computer simulation Context Density Density estimation Economic models Estimation extreme learning machine (ELM) Goodness of fit Kernel Neural networks Sample size unsupervised learning |
title | An Extreme Learning Machine Approach to Density Estimation Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A01%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Extreme%20Learning%20Machine%20Approach%20to%20Density%20Estimation%20Problems&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Cervellera,%20Cristiano&rft.date=2017-10-01&rft.volume=47&rft.issue=10&rft.spage=3254&rft.epage=3265&rft.pages=3254-3265&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2017.2648261&rft_dat=%3Cproquest_RIE%3E1861582688%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1936252953&rft_id=info:pmid/28103570&rft_ieee_id=7820121&rfr_iscdi=true |