An Extreme Learning Machine Approach to Density Estimation Problems

In this paper, we discuss how the extreme learning machine (ELM) framework can be effectively employed in the unsupervised context of multivariate density estimation. In particular, two algorithms are introduced, one for the estimation of the cumulative distribution function underlying the observed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2017-10, Vol.47 (10), p.3254-3265
Hauptverfasser: Cervellera, Cristiano, Maccio, Danilo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3265
container_issue 10
container_start_page 3254
container_title IEEE transactions on cybernetics
container_volume 47
creator Cervellera, Cristiano
Maccio, Danilo
description In this paper, we discuss how the extreme learning machine (ELM) framework can be effectively employed in the unsupervised context of multivariate density estimation. In particular, two algorithms are introduced, one for the estimation of the cumulative distribution function underlying the observed data, and one for the estimation of the probability density function. The algorithms rely on the concept of F-discrepancy, which is closely related to the Kolmogorov-Smirnov criterion for goodness of fit. Both methods retain the key feature of the ELM of providing the solution through random assignment of the hidden feature map and a very light computational burden. A theoretical analysis is provided, discussing convergence under proper hypotheses on the chosen activation functions. Simulation tests show how ELMs can be successfully employed in the density estimation framework, as a possible alternative to other standard methods.
doi_str_mv 10.1109/TCYB.2017.2648261
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7820121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7820121</ieee_id><sourcerecordid>1861582688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-a3ce804a923565f73b09b82c789ec994327a4fb987e3143a78d854040855285b3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0Eoqj0ByAkFImFJcUfcXweSygfUhEMZWCynPQCqZqk2IlE_z2uWjrgxafzc6_ODyEXjI4Zo_p2nn3cjTllaszTBHjKjsgZZynEnCt5fKhTNSAj75c0HAgtDadkwIFRIRU9I9mkiaY_ncMaoxla11TNZ_Rii6-qwWiyXrs21FHXRvfY-KrbRFPfVbXtqraJ3lybr7D25-SktCuPo_09JO8P03n2FM9eH5-zySwuRKK72IoCgSZWcyFTWSqRU50DLxRoLLROBFc2KXMNCgVLhFWwAJnQhIKUHGQuhuRmlxu2-u7Rd6aufIGrlW2w7b1hkDIZTAAE9Pofumx714TtDNMi5ZJrKQLFdlThWu8dlmbtwufcxjBqtpLNVrLZSjZ7yWHmap_c5zUuDhN_SgNwuQMqRDw8KwgpnIlfdjR8-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1936252953</pqid></control><display><type>article</type><title>An Extreme Learning Machine Approach to Density Estimation Problems</title><source>IEEE Electronic Library (IEL)</source><creator>Cervellera, Cristiano ; Maccio, Danilo</creator><creatorcontrib>Cervellera, Cristiano ; Maccio, Danilo</creatorcontrib><description>In this paper, we discuss how the extreme learning machine (ELM) framework can be effectively employed in the unsupervised context of multivariate density estimation. In particular, two algorithms are introduced, one for the estimation of the cumulative distribution function underlying the observed data, and one for the estimation of the probability density function. The algorithms rely on the concept of F-discrepancy, which is closely related to the Kolmogorov-Smirnov criterion for goodness of fit. Both methods retain the key feature of the ELM of providing the solution through random assignment of the hidden feature map and a very light computational burden. A theoretical analysis is provided, discussing convergence under proper hypotheses on the chosen activation functions. Simulation tests show how ELMs can be successfully employed in the density estimation framework, as a possible alternative to other standard methods.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2017.2648261</identifier><identifier>PMID: 28103570</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;F -discrepancy ; Algorithm design and analysis ; Algorithms ; Approximation algorithms ; Computer simulation ; Context ; Density ; Density estimation ; Economic models ; Estimation ; extreme learning machine (ELM) ; Goodness of fit ; Kernel ; Neural networks ; Sample size ; unsupervised learning</subject><ispartof>IEEE transactions on cybernetics, 2017-10, Vol.47 (10), p.3254-3265</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-a3ce804a923565f73b09b82c789ec994327a4fb987e3143a78d854040855285b3</citedby><cites>FETCH-LOGICAL-c349t-a3ce804a923565f73b09b82c789ec994327a4fb987e3143a78d854040855285b3</cites><orcidid>0000-0003-2017-0448</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7820121$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7820121$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28103570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cervellera, Cristiano</creatorcontrib><creatorcontrib>Maccio, Danilo</creatorcontrib><title>An Extreme Learning Machine Approach to Density Estimation Problems</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>In this paper, we discuss how the extreme learning machine (ELM) framework can be effectively employed in the unsupervised context of multivariate density estimation. In particular, two algorithms are introduced, one for the estimation of the cumulative distribution function underlying the observed data, and one for the estimation of the probability density function. The algorithms rely on the concept of F-discrepancy, which is closely related to the Kolmogorov-Smirnov criterion for goodness of fit. Both methods retain the key feature of the ELM of providing the solution through random assignment of the hidden feature map and a very light computational burden. A theoretical analysis is provided, discussing convergence under proper hypotheses on the chosen activation functions. Simulation tests show how ELMs can be successfully employed in the density estimation framework, as a possible alternative to other standard methods.</description><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;F -discrepancy</subject><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>Computer simulation</subject><subject>Context</subject><subject>Density</subject><subject>Density estimation</subject><subject>Economic models</subject><subject>Estimation</subject><subject>extreme learning machine (ELM)</subject><subject>Goodness of fit</subject><subject>Kernel</subject><subject>Neural networks</subject><subject>Sample size</subject><subject>unsupervised learning</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQhi0Eoqj0ByAkFImFJcUfcXweSygfUhEMZWCynPQCqZqk2IlE_z2uWjrgxafzc6_ODyEXjI4Zo_p2nn3cjTllaszTBHjKjsgZZynEnCt5fKhTNSAj75c0HAgtDadkwIFRIRU9I9mkiaY_ncMaoxla11TNZ_Rii6-qwWiyXrs21FHXRvfY-KrbRFPfVbXtqraJ3lybr7D25-SktCuPo_09JO8P03n2FM9eH5-zySwuRKK72IoCgSZWcyFTWSqRU50DLxRoLLROBFc2KXMNCgVLhFWwAJnQhIKUHGQuhuRmlxu2-u7Rd6aufIGrlW2w7b1hkDIZTAAE9Pofumx714TtDNMi5ZJrKQLFdlThWu8dlmbtwufcxjBqtpLNVrLZSjZ7yWHmap_c5zUuDhN_SgNwuQMqRDw8KwgpnIlfdjR8-A</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Cervellera, Cristiano</creator><creator>Maccio, Danilo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2017-0448</orcidid></search><sort><creationdate>20171001</creationdate><title>An Extreme Learning Machine Approach to Density Estimation Problems</title><author>Cervellera, Cristiano ; Maccio, Danilo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-a3ce804a923565f73b09b82c789ec994327a4fb987e3143a78d854040855285b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;F -discrepancy</topic><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>Computer simulation</topic><topic>Context</topic><topic>Density</topic><topic>Density estimation</topic><topic>Economic models</topic><topic>Estimation</topic><topic>extreme learning machine (ELM)</topic><topic>Goodness of fit</topic><topic>Kernel</topic><topic>Neural networks</topic><topic>Sample size</topic><topic>unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cervellera, Cristiano</creatorcontrib><creatorcontrib>Maccio, Danilo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cervellera, Cristiano</au><au>Maccio, Danilo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Extreme Learning Machine Approach to Density Estimation Problems</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>47</volume><issue>10</issue><spage>3254</spage><epage>3265</epage><pages>3254-3265</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>In this paper, we discuss how the extreme learning machine (ELM) framework can be effectively employed in the unsupervised context of multivariate density estimation. In particular, two algorithms are introduced, one for the estimation of the cumulative distribution function underlying the observed data, and one for the estimation of the probability density function. The algorithms rely on the concept of F-discrepancy, which is closely related to the Kolmogorov-Smirnov criterion for goodness of fit. Both methods retain the key feature of the ELM of providing the solution through random assignment of the hidden feature map and a very light computational burden. A theoretical analysis is provided, discussing convergence under proper hypotheses on the chosen activation functions. Simulation tests show how ELMs can be successfully employed in the density estimation framework, as a possible alternative to other standard methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28103570</pmid><doi>10.1109/TCYB.2017.2648261</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2017-0448</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2017-10, Vol.47 (10), p.3254-3265
issn 2168-2267
2168-2275
language eng
recordid cdi_ieee_primary_7820121
source IEEE Electronic Library (IEL)
subjects <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">F -discrepancy
Algorithm design and analysis
Algorithms
Approximation algorithms
Computer simulation
Context
Density
Density estimation
Economic models
Estimation
extreme learning machine (ELM)
Goodness of fit
Kernel
Neural networks
Sample size
unsupervised learning
title An Extreme Learning Machine Approach to Density Estimation Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A01%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Extreme%20Learning%20Machine%20Approach%20to%20Density%20Estimation%20Problems&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Cervellera,%20Cristiano&rft.date=2017-10-01&rft.volume=47&rft.issue=10&rft.spage=3254&rft.epage=3265&rft.pages=3254-3265&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2017.2648261&rft_dat=%3Cproquest_RIE%3E1861582688%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1936252953&rft_id=info:pmid/28103570&rft_ieee_id=7820121&rfr_iscdi=true