An Extreme Learning Machine Approach to Density Estimation Problems
In this paper, we discuss how the extreme learning machine (ELM) framework can be effectively employed in the unsupervised context of multivariate density estimation. In particular, two algorithms are introduced, one for the estimation of the cumulative distribution function underlying the observed...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cybernetics 2017-10, Vol.47 (10), p.3254-3265 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we discuss how the extreme learning machine (ELM) framework can be effectively employed in the unsupervised context of multivariate density estimation. In particular, two algorithms are introduced, one for the estimation of the cumulative distribution function underlying the observed data, and one for the estimation of the probability density function. The algorithms rely on the concept of F-discrepancy, which is closely related to the Kolmogorov-Smirnov criterion for goodness of fit. Both methods retain the key feature of the ELM of providing the solution through random assignment of the hidden feature map and a very light computational burden. A theoretical analysis is provided, discussing convergence under proper hypotheses on the chosen activation functions. Simulation tests show how ELMs can be successfully employed in the density estimation framework, as a possible alternative to other standard methods. |
---|---|
ISSN: | 2168-2267 2168-2275 |
DOI: | 10.1109/TCYB.2017.2648261 |