An Energy-Efficient Precision-Scalable ConvNet Processor in 40-nm CMOS

A precision-scalable processor for low-power ConvNets or convolutional neural networks is implemented in a 40-nm CMOS technology. To minimize energy consumption while maintaining throughput, this paper is the first to implement dynamic precision and energy scaling and exploit the sparsity of convolu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits 2017-04, Vol.52 (4), p.903-914
Hauptverfasser: Moons, Bert, Verhelst, Marian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A precision-scalable processor for low-power ConvNets or convolutional neural networks is implemented in a 40-nm CMOS technology. To minimize energy consumption while maintaining throughput, this paper is the first to implement dynamic precision and energy scaling and exploit the sparsity of convolutions in a dedicated processor architecture. The processor's 256 parallel processing units achieve a peak 102 GOPS running at 204 MHz and 1.1 V. It is fully C-programmable through a custom generated compiler and consumes 25-287 mW at 204 MHz and a scaling efficiency between 0.3 and 2.7 effective TOPS/W. It achieves 47 frames/s on the convolutional layers of the AlexNet benchmark, consuming only 76 mW. This system hereby outperforms the state-of-the-art up to five times in energy efficiency.
ISSN:0018-9200
1558-173X
DOI:10.1109/JSSC.2016.2636225