An Energy-Efficient Precision-Scalable ConvNet Processor in 40-nm CMOS
A precision-scalable processor for low-power ConvNets or convolutional neural networks is implemented in a 40-nm CMOS technology. To minimize energy consumption while maintaining throughput, this paper is the first to implement dynamic precision and energy scaling and exploit the sparsity of convolu...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2017-04, Vol.52 (4), p.903-914 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A precision-scalable processor for low-power ConvNets or convolutional neural networks is implemented in a 40-nm CMOS technology. To minimize energy consumption while maintaining throughput, this paper is the first to implement dynamic precision and energy scaling and exploit the sparsity of convolutions in a dedicated processor architecture. The processor's 256 parallel processing units achieve a peak 102 GOPS running at 204 MHz and 1.1 V. It is fully C-programmable through a custom generated compiler and consumes 25-287 mW at 204 MHz and a scaling efficiency between 0.3 and 2.7 effective TOPS/W. It achieves 47 frames/s on the convolutional layers of the AlexNet benchmark, consuming only 76 mW. This system hereby outperforms the state-of-the-art up to five times in energy efficiency. |
---|---|
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/JSSC.2016.2636225 |