Power Flow Management of a Grid Tied PV-Battery System for Electric Vehicles Charging

The prospective spread of electric vehicles (EV) and plug-in hybrid EV raises the need for fast charging rates. High required charging rates lead to high power demands, which may not be supported by the grid. In this paper, an optimal power flow technique of a PV-battery powered fast EV charging sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2017-03, Vol.53 (2), p.1347-1357
Hauptverfasser: Badawy, Mohamed O., Sozer, Yilmaz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The prospective spread of electric vehicles (EV) and plug-in hybrid EV raises the need for fast charging rates. High required charging rates lead to high power demands, which may not be supported by the grid. In this paper, an optimal power flow technique of a PV-battery powered fast EV charging station is presented to continuously minimize the operation cost. The objective is to help the penetration of PV-battery systems into the grid and to support the growing need of fast EV charging. An optimization problem is formulated along with the required constraints and the operating cost function is chosen as a combination of electricity grid prices and the battery degradation cost. In the first stage of the proposed optimization procedure, an offline particle swarm optimization (PSO) is performed as a prediction layer. In the second stage, dynamic programming (DP) is performed as an online reactive management layer. Forecasted system data is utilized in both stages to find the optimal power management solution. In the reactive management layer, the outputs of the PSO are used to limit the available state trajectories used in the DP and, accordingly, improve the system computation time and efficiency. Online error compensation is implemented into the DP and fed back to the prediction layer for necessary prediction adjustments. Simulation and 1 kW prototype experimental results are successfully implemented to validate the system effectiveness and to demonstrate the benefits of using a hybrid grid tied system of PV-battery for fast EVs charging stations.
ISSN:0093-9994
1939-9367
DOI:10.1109/TIA.2016.2633526