A Combined Voxel and Particle Filter-Based Approach for Fast Obstacle Detection and Tracking in Automotive Applications

In this paper, a new method for real-time detection, motion estimation, and tracking of generic obstacles using just a 3-D point cloud and odometry information as input is presented. In this approach, a simplification of the world is done using voxels, supported by a particle filter-based 3-D object...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2017-07, Vol.18 (7), p.1824-1834
Hauptverfasser: Morales, Nestor, Toledo, Jonay, Acosta, Leopoldo, Sanchez-Medina, Javier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a new method for real-time detection, motion estimation, and tracking of generic obstacles using just a 3-D point cloud and odometry information as input is presented. In this approach, a simplification of the world is done using voxels, supported by a particle filter-based 3-D object segmentation and a motion estimation scheme. That combination of techniques leverages a fast and reliable object detection, providing also motion speed and direction information. Four detailed studies have been performed in order to assess the suitability of the method, two of them related to the parameterization of the method and its input point cloud. Another one compares the tracking and detection results with other state-of-the-art methods. Last tests are intended for the characterization of the execution times required. Results are encouraging, with a high detection rate, low error rate, and real-time capable computing performance. In the attached video, it is possible to observe the behavior of the method, both using a stereovision and a light-detection and ranging generated point clouds as an input.
ISSN:1524-9050
1558-0016
DOI:10.1109/TITS.2016.2616718