The Gaussian sampling strategy for probabilistic roadmap planners
Probabilistic roadmap planners (PRMs) form a relatively new technique for motion planning that has shown great potential. A critical aspect of PRM is the probabilistic strategy used to sample the free configuration space. In this paper we present a new, simple sampling strategy, which we call the Ga...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1023 vol.2 |
---|---|
container_issue | |
container_start_page | 1018 |
container_title | |
container_volume | 2 |
creator | Boor, V. Overmars, M.H. van der Stappen, A.F. |
description | Probabilistic roadmap planners (PRMs) form a relatively new technique for motion planning that has shown great potential. A critical aspect of PRM is the probabilistic strategy used to sample the free configuration space. In this paper we present a new, simple sampling strategy, which we call the Gaussian sampler, that gives a much better coverage of the difficult parts of the free configuration space. The approach uses only elementary operations which makes it suitable for many different planning problems. Experiments indicate that the technique is very efficient indeed. |
doi_str_mv | 10.1109/ROBOT.1999.772447 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_772447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>772447</ieee_id><sourcerecordid>26952255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-969e7e4b318f4c5c2de46efb39c8dc4d0ea95f07324d5dd80f0a0d2bce07816d3</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMfYK39AXrKydvWN1-bzbEWrUKhIBW8Ldnk3RrZL5Ptof_ehQoDcxmGZ4aQewZLxsA8feyed_slM8YsteZS6gsy40rrDAr9dUkWRhcwSShWQH5FZgwUZFJzc0NuU_oBACHyfEZW-2-kG3tMKdiOJtsOTegONI3Rjng40bqPdIh9ZavQhDQGR2NvfWsHOjS26zCmO3Jd2ybh4t_n5PP1Zb9-y7a7zft6tc2cYHrMTG5Qo6wEK2rplOMeZY51JYwrvJMe0BpVgxZceuV9ATVY8LxyOO1guRdz8njunXB-j5jGsg3JYTNhYH9MJc-N4lypKfhwDgZELIcYWhtP5fkl8QeCnlqX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>26952255</pqid></control><display><type>conference_proceeding</type><title>The Gaussian sampling strategy for probabilistic roadmap planners</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Boor, V. ; Overmars, M.H. ; van der Stappen, A.F.</creator><creatorcontrib>Boor, V. ; Overmars, M.H. ; van der Stappen, A.F.</creatorcontrib><description>Probabilistic roadmap planners (PRMs) form a relatively new technique for motion planning that has shown great potential. A critical aspect of PRM is the probabilistic strategy used to sample the free configuration space. In this paper we present a new, simple sampling strategy, which we call the Gaussian sampler, that gives a much better coverage of the difficult parts of the free configuration space. The approach uses only elementary operations which makes it suitable for many different planning problems. Experiments indicate that the technique is very efficient indeed.</description><identifier>ISSN: 1050-4729</identifier><identifier>ISBN: 9780780351806</identifier><identifier>ISBN: 0780351800</identifier><identifier>EISSN: 2577-087X</identifier><identifier>DOI: 10.1109/ROBOT.1999.772447</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; Genetic algorithms ; Layout ; Mobile robots ; Motion planning ; Neural networks ; Orbital robotics ; Path planning ; Sampling methods</subject><ispartof>Proceedings - IEEE International Conference on Robotics and Automation, 1999, Vol.2, p.1018-1023 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-969e7e4b318f4c5c2de46efb39c8dc4d0ea95f07324d5dd80f0a0d2bce07816d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/772447$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/772447$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Boor, V.</creatorcontrib><creatorcontrib>Overmars, M.H.</creatorcontrib><creatorcontrib>van der Stappen, A.F.</creatorcontrib><title>The Gaussian sampling strategy for probabilistic roadmap planners</title><title>Proceedings - IEEE International Conference on Robotics and Automation</title><addtitle>ROBOT</addtitle><description>Probabilistic roadmap planners (PRMs) form a relatively new technique for motion planning that has shown great potential. A critical aspect of PRM is the probabilistic strategy used to sample the free configuration space. In this paper we present a new, simple sampling strategy, which we call the Gaussian sampler, that gives a much better coverage of the difficult parts of the free configuration space. The approach uses only elementary operations which makes it suitable for many different planning problems. Experiments indicate that the technique is very efficient indeed.</description><subject>Computer science</subject><subject>Genetic algorithms</subject><subject>Layout</subject><subject>Mobile robots</subject><subject>Motion planning</subject><subject>Neural networks</subject><subject>Orbital robotics</subject><subject>Path planning</subject><subject>Sampling methods</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>9780780351806</isbn><isbn>0780351800</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkE1LAzEYhIMfYK39AXrKydvWN1-bzbEWrUKhIBW8Ldnk3RrZL5Ptof_ehQoDcxmGZ4aQewZLxsA8feyed_slM8YsteZS6gsy40rrDAr9dUkWRhcwSShWQH5FZgwUZFJzc0NuU_oBACHyfEZW-2-kG3tMKdiOJtsOTegONI3Rjng40bqPdIh9ZavQhDQGR2NvfWsHOjS26zCmO3Jd2ybh4t_n5PP1Zb9-y7a7zft6tc2cYHrMTG5Qo6wEK2rplOMeZY51JYwrvJMe0BpVgxZceuV9ATVY8LxyOO1guRdz8njunXB-j5jGsg3JYTNhYH9MJc-N4lypKfhwDgZELIcYWhtP5fkl8QeCnlqX</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Boor, V.</creator><creator>Overmars, M.H.</creator><creator>van der Stappen, A.F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1999</creationdate><title>The Gaussian sampling strategy for probabilistic roadmap planners</title><author>Boor, V. ; Overmars, M.H. ; van der Stappen, A.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-969e7e4b318f4c5c2de46efb39c8dc4d0ea95f07324d5dd80f0a0d2bce07816d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Computer science</topic><topic>Genetic algorithms</topic><topic>Layout</topic><topic>Mobile robots</topic><topic>Motion planning</topic><topic>Neural networks</topic><topic>Orbital robotics</topic><topic>Path planning</topic><topic>Sampling methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Boor, V.</creatorcontrib><creatorcontrib>Overmars, M.H.</creatorcontrib><creatorcontrib>van der Stappen, A.F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Boor, V.</au><au>Overmars, M.H.</au><au>van der Stappen, A.F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The Gaussian sampling strategy for probabilistic roadmap planners</atitle><btitle>Proceedings - IEEE International Conference on Robotics and Automation</btitle><stitle>ROBOT</stitle><date>1999</date><risdate>1999</risdate><volume>2</volume><spage>1018</spage><epage>1023 vol.2</epage><pages>1018-1023 vol.2</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><isbn>9780780351806</isbn><isbn>0780351800</isbn><abstract>Probabilistic roadmap planners (PRMs) form a relatively new technique for motion planning that has shown great potential. A critical aspect of PRM is the probabilistic strategy used to sample the free configuration space. In this paper we present a new, simple sampling strategy, which we call the Gaussian sampler, that gives a much better coverage of the difficult parts of the free configuration space. The approach uses only elementary operations which makes it suitable for many different planning problems. Experiments indicate that the technique is very efficient indeed.</abstract><pub>IEEE</pub><doi>10.1109/ROBOT.1999.772447</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1050-4729 |
ispartof | Proceedings - IEEE International Conference on Robotics and Automation, 1999, Vol.2, p.1018-1023 vol.2 |
issn | 1050-4729 2577-087X |
language | eng |
recordid | cdi_ieee_primary_772447 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computer science Genetic algorithms Layout Mobile robots Motion planning Neural networks Orbital robotics Path planning Sampling methods |
title | The Gaussian sampling strategy for probabilistic roadmap planners |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A28%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20Gaussian%20sampling%20strategy%20for%20probabilistic%20roadmap%20planners&rft.btitle=Proceedings%20-%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation&rft.au=Boor,%20V.&rft.date=1999&rft.volume=2&rft.spage=1018&rft.epage=1023%20vol.2&rft.pages=1018-1023%20vol.2&rft.issn=1050-4729&rft.eissn=2577-087X&rft.isbn=9780780351806&rft.isbn_list=0780351800&rft_id=info:doi/10.1109/ROBOT.1999.772447&rft_dat=%3Cproquest_6IE%3E26952255%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26952255&rft_id=info:pmid/&rft_ieee_id=772447&rfr_iscdi=true |