The Gaussian sampling strategy for probabilistic roadmap planners

Probabilistic roadmap planners (PRMs) form a relatively new technique for motion planning that has shown great potential. A critical aspect of PRM is the probabilistic strategy used to sample the free configuration space. In this paper we present a new, simple sampling strategy, which we call the Ga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Boor, V., Overmars, M.H., van der Stappen, A.F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1023 vol.2
container_issue
container_start_page 1018
container_title
container_volume 2
creator Boor, V.
Overmars, M.H.
van der Stappen, A.F.
description Probabilistic roadmap planners (PRMs) form a relatively new technique for motion planning that has shown great potential. A critical aspect of PRM is the probabilistic strategy used to sample the free configuration space. In this paper we present a new, simple sampling strategy, which we call the Gaussian sampler, that gives a much better coverage of the difficult parts of the free configuration space. The approach uses only elementary operations which makes it suitable for many different planning problems. Experiments indicate that the technique is very efficient indeed.
doi_str_mv 10.1109/ROBOT.1999.772447
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_772447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>772447</ieee_id><sourcerecordid>26952255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-969e7e4b318f4c5c2de46efb39c8dc4d0ea95f07324d5dd80f0a0d2bce07816d3</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMfYK39AXrKydvWN1-bzbEWrUKhIBW8Ldnk3RrZL5Ptof_ehQoDcxmGZ4aQewZLxsA8feyed_slM8YsteZS6gsy40rrDAr9dUkWRhcwSShWQH5FZgwUZFJzc0NuU_oBACHyfEZW-2-kG3tMKdiOJtsOTegONI3Rjng40bqPdIh9ZavQhDQGR2NvfWsHOjS26zCmO3Jd2ybh4t_n5PP1Zb9-y7a7zft6tc2cYHrMTG5Qo6wEK2rplOMeZY51JYwrvJMe0BpVgxZceuV9ATVY8LxyOO1guRdz8njunXB-j5jGsg3JYTNhYH9MJc-N4lypKfhwDgZELIcYWhtP5fkl8QeCnlqX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>26952255</pqid></control><display><type>conference_proceeding</type><title>The Gaussian sampling strategy for probabilistic roadmap planners</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Boor, V. ; Overmars, M.H. ; van der Stappen, A.F.</creator><creatorcontrib>Boor, V. ; Overmars, M.H. ; van der Stappen, A.F.</creatorcontrib><description>Probabilistic roadmap planners (PRMs) form a relatively new technique for motion planning that has shown great potential. A critical aspect of PRM is the probabilistic strategy used to sample the free configuration space. In this paper we present a new, simple sampling strategy, which we call the Gaussian sampler, that gives a much better coverage of the difficult parts of the free configuration space. The approach uses only elementary operations which makes it suitable for many different planning problems. Experiments indicate that the technique is very efficient indeed.</description><identifier>ISSN: 1050-4729</identifier><identifier>ISBN: 9780780351806</identifier><identifier>ISBN: 0780351800</identifier><identifier>EISSN: 2577-087X</identifier><identifier>DOI: 10.1109/ROBOT.1999.772447</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; Genetic algorithms ; Layout ; Mobile robots ; Motion planning ; Neural networks ; Orbital robotics ; Path planning ; Sampling methods</subject><ispartof>Proceedings - IEEE International Conference on Robotics and Automation, 1999, Vol.2, p.1018-1023 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-969e7e4b318f4c5c2de46efb39c8dc4d0ea95f07324d5dd80f0a0d2bce07816d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/772447$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/772447$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Boor, V.</creatorcontrib><creatorcontrib>Overmars, M.H.</creatorcontrib><creatorcontrib>van der Stappen, A.F.</creatorcontrib><title>The Gaussian sampling strategy for probabilistic roadmap planners</title><title>Proceedings - IEEE International Conference on Robotics and Automation</title><addtitle>ROBOT</addtitle><description>Probabilistic roadmap planners (PRMs) form a relatively new technique for motion planning that has shown great potential. A critical aspect of PRM is the probabilistic strategy used to sample the free configuration space. In this paper we present a new, simple sampling strategy, which we call the Gaussian sampler, that gives a much better coverage of the difficult parts of the free configuration space. The approach uses only elementary operations which makes it suitable for many different planning problems. Experiments indicate that the technique is very efficient indeed.</description><subject>Computer science</subject><subject>Genetic algorithms</subject><subject>Layout</subject><subject>Mobile robots</subject><subject>Motion planning</subject><subject>Neural networks</subject><subject>Orbital robotics</subject><subject>Path planning</subject><subject>Sampling methods</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>9780780351806</isbn><isbn>0780351800</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkE1LAzEYhIMfYK39AXrKydvWN1-bzbEWrUKhIBW8Ldnk3RrZL5Ptof_ehQoDcxmGZ4aQewZLxsA8feyed_slM8YsteZS6gsy40rrDAr9dUkWRhcwSShWQH5FZgwUZFJzc0NuU_oBACHyfEZW-2-kG3tMKdiOJtsOTegONI3Rjng40bqPdIh9ZavQhDQGR2NvfWsHOjS26zCmO3Jd2ybh4t_n5PP1Zb9-y7a7zft6tc2cYHrMTG5Qo6wEK2rplOMeZY51JYwrvJMe0BpVgxZceuV9ATVY8LxyOO1guRdz8njunXB-j5jGsg3JYTNhYH9MJc-N4lypKfhwDgZELIcYWhtP5fkl8QeCnlqX</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Boor, V.</creator><creator>Overmars, M.H.</creator><creator>van der Stappen, A.F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1999</creationdate><title>The Gaussian sampling strategy for probabilistic roadmap planners</title><author>Boor, V. ; Overmars, M.H. ; van der Stappen, A.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-969e7e4b318f4c5c2de46efb39c8dc4d0ea95f07324d5dd80f0a0d2bce07816d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Computer science</topic><topic>Genetic algorithms</topic><topic>Layout</topic><topic>Mobile robots</topic><topic>Motion planning</topic><topic>Neural networks</topic><topic>Orbital robotics</topic><topic>Path planning</topic><topic>Sampling methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Boor, V.</creatorcontrib><creatorcontrib>Overmars, M.H.</creatorcontrib><creatorcontrib>van der Stappen, A.F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Boor, V.</au><au>Overmars, M.H.</au><au>van der Stappen, A.F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The Gaussian sampling strategy for probabilistic roadmap planners</atitle><btitle>Proceedings - IEEE International Conference on Robotics and Automation</btitle><stitle>ROBOT</stitle><date>1999</date><risdate>1999</risdate><volume>2</volume><spage>1018</spage><epage>1023 vol.2</epage><pages>1018-1023 vol.2</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><isbn>9780780351806</isbn><isbn>0780351800</isbn><abstract>Probabilistic roadmap planners (PRMs) form a relatively new technique for motion planning that has shown great potential. A critical aspect of PRM is the probabilistic strategy used to sample the free configuration space. In this paper we present a new, simple sampling strategy, which we call the Gaussian sampler, that gives a much better coverage of the difficult parts of the free configuration space. The approach uses only elementary operations which makes it suitable for many different planning problems. Experiments indicate that the technique is very efficient indeed.</abstract><pub>IEEE</pub><doi>10.1109/ROBOT.1999.772447</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1050-4729
ispartof Proceedings - IEEE International Conference on Robotics and Automation, 1999, Vol.2, p.1018-1023 vol.2
issn 1050-4729
2577-087X
language eng
recordid cdi_ieee_primary_772447
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer science
Genetic algorithms
Layout
Mobile robots
Motion planning
Neural networks
Orbital robotics
Path planning
Sampling methods
title The Gaussian sampling strategy for probabilistic roadmap planners
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A28%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20Gaussian%20sampling%20strategy%20for%20probabilistic%20roadmap%20planners&rft.btitle=Proceedings%20-%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation&rft.au=Boor,%20V.&rft.date=1999&rft.volume=2&rft.spage=1018&rft.epage=1023%20vol.2&rft.pages=1018-1023%20vol.2&rft.issn=1050-4729&rft.eissn=2577-087X&rft.isbn=9780780351806&rft.isbn_list=0780351800&rft_id=info:doi/10.1109/ROBOT.1999.772447&rft_dat=%3Cproquest_6IE%3E26952255%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26952255&rft_id=info:pmid/&rft_ieee_id=772447&rfr_iscdi=true