The Gaussian sampling strategy for probabilistic roadmap planners
Probabilistic roadmap planners (PRMs) form a relatively new technique for motion planning that has shown great potential. A critical aspect of PRM is the probabilistic strategy used to sample the free configuration space. In this paper we present a new, simple sampling strategy, which we call the Ga...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Probabilistic roadmap planners (PRMs) form a relatively new technique for motion planning that has shown great potential. A critical aspect of PRM is the probabilistic strategy used to sample the free configuration space. In this paper we present a new, simple sampling strategy, which we call the Gaussian sampler, that gives a much better coverage of the difficult parts of the free configuration space. The approach uses only elementary operations which makes it suitable for many different planning problems. Experiments indicate that the technique is very efficient indeed. |
---|---|
ISSN: | 1050-4729 2577-087X |
DOI: | 10.1109/ROBOT.1999.772447 |