The Gaussian sampling strategy for probabilistic roadmap planners

Probabilistic roadmap planners (PRMs) form a relatively new technique for motion planning that has shown great potential. A critical aspect of PRM is the probabilistic strategy used to sample the free configuration space. In this paper we present a new, simple sampling strategy, which we call the Ga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Boor, V., Overmars, M.H., van der Stappen, A.F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Probabilistic roadmap planners (PRMs) form a relatively new technique for motion planning that has shown great potential. A critical aspect of PRM is the probabilistic strategy used to sample the free configuration space. In this paper we present a new, simple sampling strategy, which we call the Gaussian sampler, that gives a much better coverage of the difficult parts of the free configuration space. The approach uses only elementary operations which makes it suitable for many different planning problems. Experiments indicate that the technique is very efficient indeed.
ISSN:1050-4729
2577-087X
DOI:10.1109/ROBOT.1999.772447