A low-power DSP core-based software radio architecture

This paper describes an approach to developing a low-power digital signal processor (DSP) subsystem architecture for advanced software radio platforms. The architecture is intended to support next-generation wide-band spread-spectrum military waveforms. The methodology illustrates how a next-generat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on selected areas in communications 1999-04, Vol.17 (4), p.574-590
Hauptverfasser: Gunn, J.E., Barron, K.S., Ruczczyk, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes an approach to developing a low-power digital signal processor (DSP) subsystem architecture for advanced software radio platforms. The architecture is intended to support next-generation wide-band spread-spectrum military waveforms. The methodology illustrates how a next-generation programmable DSP core forms the basis for an application-specific integrated circuit (ASIC). It also shows how semiconductor technologies can be integrated into such chips to achieve algorithm performance while minimizing subsystem power consumption. The ASIC is run-time configurable to maintain high flexibility. The range of RF channel modulation ("waveforms") and air interfaces is intended to include both wide-band and traditional narrow-band waveforms. Estimated gate counts and power-consumption estimates are presented. DSP circuit-design and power-management strategies necessary to achieve low-power operation are presented. While the architecture discussion focuses on military waveforms, the approach is also applicable to commercial waveforms.
ISSN:0733-8716
1558-0008
DOI:10.1109/49.761037