Efficient speech recognition using subvector quantization and discrete-mixture HMMs

This paper introduces a new form of observation distributions for hidden Markov models (HMMs), combining subvector quantization and mixtures of discrete distributions. We present efficient training and decoding algorithms for the discrete-mixture HMMs (DMHMMs). Our experimental results in the air-tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tsakalidis, S., Digalakis, V., Neumeyer, L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces a new form of observation distributions for hidden Markov models (HMMs), combining subvector quantization and mixtures of discrete distributions. We present efficient training and decoding algorithms for the discrete-mixture HMMs (DMHMMs). Our experimental results in the air-travel information domain show that the high-level of recognition accuracy of continuous mixture-density HMMs (CDHMMs) can be maintained at significantly faster decoding speeds. Moreover, we show that when the same number of mixture components is used in DMHMMs and CDHMMs, the new models exhibit superior recognition performance.
ISSN:1520-6149
2379-190X
DOI:10.1109/ICASSP.1999.759730