Probability-Driven Multibit Flip-Flop Integration With Clock Gating

Data-driven clock gated (DDCG) and multibit flip-flops (MBFFs) are two low-power design techniques that are usually treated separately. Combining these techniques into a single grouping algorithm and design flow enables further power savings. We study MBFF multiplicity and its synergy with FF data-t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems 2017-03, Vol.25 (3), p.1173-1177
Hauptverfasser: Gluzer, Doron, Wimer, Shmuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Data-driven clock gated (DDCG) and multibit flip-flops (MBFFs) are two low-power design techniques that are usually treated separately. Combining these techniques into a single grouping algorithm and design flow enables further power savings. We study MBFF multiplicity and its synergy with FF data-to-clock toggling probabilities. A probabilistic model is implemented to maximize the expected energy savings by grouping FFs in increasing order of their data-to-clock toggling probabilities. We present a front-end design flow, guided by physical layout considerations for a 65-nm 32-bit MIPS and a 28-nm industrial network processor. It is shown to achieve the power savings of 23% and 17%, respectively, compared with designs with ordinary FFs. About half of the savings was due to integrating the DDCG into the MBFFs.
ISSN:1063-8210
1557-9999
DOI:10.1109/TVLSI.2016.2614004